The syn/anti-dichotomy in the palladium-catalyzed addition of nucleophiles to alkenes
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
25378278
PubMed Central
PMC4471584
DOI
10.1002/chem.201404070
Knihovny.cz E-zdroje
- Klíčová slova
- alkenes, catalysis, nucleophilic addition, palladium, stereochemistry,
- Publikační typ
- časopisecké články MeSH
In this review the stereochemistry of palladium-catalyzed addition of nucleophiles to alkenes is discussed, and examples of these reactions in organic synthesis are given. Most of the reactions discussed involve oxygen and nitrogen nucleophiles; the Wacker oxidation of ethylene has been reviewed in detail. An anti-hydroxypalladation in the Wacker oxidation has strong support from both experimental and computational studies. From the reviewed material it is clear that anti-addition of oxygen and nitrogen nucleophiles is strongly favored in intermolecular addition to olefin-palladium complexes even if the nucleophile is coordinated to the metal. On the other hand, syn-addition is common in the case of intramolecular oxy- and amidopalladation as a result of the initial coordination of the internal nucleophile to the metal.
Zobrazit více v PubMed
p. 2.
Schmid GH, Garratt DG, Bonds ElectrophilicAdditionstoC=X. In: The Chemistry of Double Bonded Functional Groups. Morrison JD, editor; Patai S, editor. New York: Wiley; (Ed.: (Ed.:, Part, p.
Kočovský P, Bonds ElectrophilicAdditionstoC=X. In: Chemistry of Functional Groups, Supp. A3: The Chemistry of Double-Bonded Functional Groups. Patai S, editor. Chichester: Wiley; 1977. (Ed.:;
Finn MG, Sharpless KB. Asymmetric Synthesis. New York: Academic; 1997. 247, pVol1985.
p. 1084. The only claim that iodoetherification of homoallylic alcohols and the related iodolactonization of the corresponding acids may proceed as a syn-process proved to be incorrect:
Lipshutz BH, Barton JC. J. Am. Chem. Soc. 114
Mihelich ED, Hite GA. J. Am. Chem. Soc. 1992;114
p. 5580.
Kočovský P, Pour M. J. Org. Chem. 55
Kočovský P, Langer V, Gogoll A. J. Chem. Soc. Chem. Commun. 1990
Kočovský P. Organometallics. 1993;12
p. 228.
Pfund RA, Ganter C. Helv. Chim. Acta. 62
Tombo GMR, Ganter C. Helv. Chim. Acta. 1979;68
Tombo GMR, Ganter C. Helv. Chim. Acta. 1985;85 and references therein.
p. 2119.
Hegedus LS. Transition Metals in the Synthesis of Complex Organic Molecules. Mill Valley: University Science Books;
Negishi E. Organopalladium Chemistry for Organic Synthesis. New York: Wiley; 1994. Vol. 2p. 2002.
Zeise WC. Ann. Phys. Chem. 1827;6:632.
p. 9038. For previous reviews on this matter, see.
Keith JA, Henry PM. Angew. Chem. Int. Ed. 48
Angew. Chem. 2009;121
McDonald RI, Liu G, Stahl SS. Chem. Rev. 2009;111 PubMed PMC
p. 176.
Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Rüttinger R, Kojer H. Angew. Chem. 71
Smidt J, Hafner W, Jira R, Sieber R, Sedlmeier J, Sabel A. Angew. Chem. Int. Engl. Ed. 1959;1
Angew. Chem. 1962;74 ; for a historical overview of the discovery of Wacker oxidation, see:
Jira R. Angew. Chem. Int. Ed. 1962;48
Angew. Chem. 2009;121
Henry PM. J. Am. Chem. Soc. 1964;86:3246.
Bäckvall J-E, Åkermark B, Ljunggren SO. J. Am. Chem. Soc. 1979;101:2411.
Keith JA, Nielsen RJ, Oxgaard J, Goddard WA. J. Am. Chem. Soc. 2007;129:12342. PubMed
Henry PM. J. Org. Chem. 1973;38:2415.
p. 351.
Kosaki M, Isemura M, Kitaura K, Shinoda S, Saito I. J. Mol. Catal. 2
Saito I, Shinoda S. J. Mol. Catal. 1977;9
Bryndza HE. Organometallics. 1985;4:406.
Bäckvall J-E, Åkermark B, Ljunggren SO. J. Chem. Soc. Chem. Commun. 1977:264.
Bäckvall J-E. Tetrahedron Lett. 1977;18:467.
p. 4369.
Bäckvall J-E, Björkman EE, Petersson L, Siegbahn P. J. Am. Chem. Soc. 106
Bäckvall J-E, Björkman EE, Petersson L, Siegbahn P. J. Am. Chem. Soc. 1984;107
Siegbahn P. J. Am. Chem. Soc. 1985;117
p. 14672.
Siegbahn P. J. Phys. Chem. 100
Anderson BJ, Keith JA, Sigman MS. J. Am. Chem. Soc. 1996;132 PubMed PMC
p. 6735. Note that the species with the 1,4-disposition of [Pd] and a hydroxy group, proposed as an intermediate in another reaction (including the same catalytic mixture of PdCl2224−2122CuCl, and LiCl, or Li PdCl in a stoichiometric experiment, both in DME at RT), undergoes a spontaneous ring closure (obviously with inversion of configuration). The latter complex does not require an initial replacement of [Pd] with Cl that would generate the corresponding 4-chloro-1-hydroxyderivative (which would be stable under the reaction conditions and would not undergo a spontaneous ring closure). Hence, similar behavior might be anticipated for the 1,2-hydroxypalladated species, and it is interesting that the chlorohydrin was actually isolated (Scheme 8). For a full discussion, see.
Kočovský P, Pour M, Gogoll A, Hanuš V, Smrčina M. J. Am. Chem. Soc. 112
Kočovský P, Šrogl J, Pour M, Gogoll A. J. Am. Chem. Soc. 1990;116
See also discussion in Section 4.2., Scheme 24.
p. 4959.
Bäckvall J-E, Nordberg RE. J. Am. Chem. Soc. 103
Bäckvall J-E, Byström SE, Nordberg RE. J. Org. Chem. 1981;49
Bäckvall J-E, Nordberg RE, Wilhelm D. J. Am. Chem. Soc. 1984;107
Bäckvall J-E, Andersson PG. J. Am. Chem. Soc. 1985;112
Andell OS, Bäckvall J-E. J. Organomet. Chem. 1983;244:401.
Beyramabadi SA, Eshtiagh-Hosseini H, Housaindokht MR, Morsali A. Organometallics. 2008;27:72.
Keith JA, Nielsen RJ, Oxgaard J, Goddard WA, Henry PM. Organometallics. 2009;28:1618.
p. 8738.
Comas-Vives A, Stirling A, Lledós A, Ujaque G. Chem. Eur. J. 16 PubMed
Nair NN. J. Phys. Chem. B. 2010;115 PubMed
Imandi V, Kunnikuruvan S, Nair NN. Chem. Eur. J. 2011;19 PubMed
Kovács G, Stirling A, Lledós A, Ujaque G. Chem. Eur. J. 2012;18:5612. PubMed
Tsuji J, Nagashima H, Nemoto H. Org. Synth. 1990;7:137.
Keinan Y, Seth KK, Lamed R. J. Am. Chem. Soc. 1986;108:3474. For an example, where the Wacker-type oxidation catalyzed by PdCl22anti-II/CuCl (producing a ketone) was assumed to proceed as an addition, with an initial binding of Pd to a neighboring ether oxygen in the substrate molecule, see.
p. 2885. Originally, this transformation required PdCl2−p4II0or the presence of Cl as in the original Wacker protocol. The chloride-free oxidation (with -BQ as the terminal oxidant) was first shown to require the addition of a strong Brønsted acid (namely HClO ), which prevents the precipitation of Pd-black by pushing the equilibrium HPd X ⇄ Pd + HX to the left:
Bäckvall J-E, Hopkins RB. Tetrahedron Lett. 29
Bäckvall J-E, Hopkins RB, Grennberg H, Mader M, Awasthi AK. J. Am. Chem. Soc. 1988;112 2The same observation was also reported recently, where NaNO is believed to have a role:
Zhang G, Xie X, Wang Y, Wen X, Zhao Y, Ding C. Org. Biomol. Chem. 1990;11 PubMed
p. 3237.
Teo P, Wickens ZK, Dong G, Grubbs RH. Org. Lett. 14 ; for an earlier work on altering the regioselectivity, see:
Feringa BL. J. Chem. Soc. Chem. Commun. 2012
Kiers NH, Feringa BL, van Leeuwen PWNM. Tetrahedron Lett. 1986;33
Kiers NH, Feringa BL, Kooijman H, Spek AL, van Leeuwen PWNM. J. Chem. Soc. Chem. Commun. 1992
Wenzel TT. J. Chem. Soc. Chem. Commun. 1992
p. 1363.
Åkermark B, Bäckvall J-E, Hansén KS, Sjöberg K, Zetterberg K. Tetrahedron Lett. 15
Åkermark B, Bäckvall J-E. Tetrahedron Lett. 1974;16
Åkermark B, Zetterberg K. J. Am. Chem. Soc. 1975;106
p. 295. An analogous mechanism was also demonstrated for the related Pt-promoted amination.
Panuzi A, de Renzi A, Paiaro G. J. Am. Chem. Soc. 92
Stille JK, Fox DB. J. Am. Chem. Soc. 1970;92
p. 335.
Bäckvall J-E. Acc. Chem. Res. 16
Bäckvall J-E. Pure Appl. Chem. 1983;64
Corey EJ, Cheng X-M. The Logic of Chemical Synthesis. New York: Wiley;
Nicolaou KC, Sorensen EJ. Classics in Total Synthesis. Weinheim: VCH; 1989.
Nicolaou KC, Snyder SA. Classics in Total Synthesis. Wiley-VCH, Weinheim: II; 1996.
Kürti L, Czakó B. Strategic Applications of Named Reactions in Organic Synthesis. Amsterdam: Elsevier; 2003.
Hudlický T, Reed JW. The Way of Synthesis. Weinheim: Wiley-VCH; 2005.
Kočovský P, Tureček F, Hájíček J. Synthesis of Natural Products: Problems of Stereoselectivity. Boca Raton, Florida: CRC Press; 2007. Vols. 1 and 21986.
p. 3. For representative reviews on halolactonization and related reactions, see.
Bartlett PA. Tetrahedron. 36
Cardillo G, Orena M. Tetrahedron. 1980;46
Robin S, Rousseau G. Eur. J. Org. Chem. 1990
p. 1496.
Semmelhack MF, Bodurow C. J. Am. Chem. Soc. 106
J. Am. Chem. Soc. 1984;106 For correction of some of the structures, see:
Tamaru Y, Kobayashi T, Kawamura S, Ochiachi H, Hojo M, Yoshida Z. Tetrahedron Lett. 1985;26:3207.
Semmelhack MF, Zhang N. J. Org. Chem. 1989;54:4483.
McCormick M, Mohanan R, Soria J, Goldsmith D, Liotta D. J. Org. Chem. 1989;54:4485.
p. 325.
Tamaru Y, Hojo M, Yoshida Z. Tetrahedron Lett. 28
Tamaru Y, Hojo M, Yoshida Z. J. Org. Chem. 1987;56
Ferguson J, Zeng F, Alper H. Org. Lett. 2012;14:5602. PubMed
Hayashi T, Yamasaki K, Mimura M, Uozumi Y. J. Am. Chem. Soc. 2004;126:3036. PubMed
Andersson PG, Bäckvall J-E. In: Organopalladium Chemistry for Organic Synthesis. Negishi E, editor. New York: Wiley; 2002. p. 1859. Vol. 2-catalyzed 1,4-functionalization of conjugated dienes, see ref. [21] and: (Ed.:, C-O and C-N Bond Formation Involving Conjugated Dienes and Allylpalladium IntermediatesFor a similar effect of chloride on the stereochemistry of the PdII.
Trend RM, Ramtohul YK, Stoltz BM. J. Am. Chem. Soc. 2005;127:17778. PubMed PMC
Semmelhack MF, Kim CR, Dobler W, Meier M. Tetrahedron Lett. 1989;30:4925.
p. 262.
Tietze L, Sommer KM, Zinngrebe J, Stecker F. Angew. Chem. 117 PubMed
Tietze L, Stecker F, Zinngrebe J, Sommer KM. Chem. Eur. J. 2005;12 ; for related but simpler exmaples, see:
Semmelhack MF, Epa WR. Tetrahedron Lett. 2006;34
p. 1620.
Wolfe JP, Rossi MA. J. Am. Chem. Soc. 126 PubMed
Hay MB, Hardin AR, Wolfe JP. J. Org. Chem. 2004;70 PubMed PMC
Hay MB, Wolfe JP. J. Am. Chem. Soc. 2005;127 PubMed PMC
Hay MB, Wolfe JP. Tetrahedron Lett. 2005;47 PubMed PMC
Ward AF, Xu Y, Wolfe JP. Chem. Commun. 2006;48 PubMed PMC
Nakhla JS, Kampf JW, Wolfe JP. J. Am. Chem. Soc. 2006;128:2893. PubMed PMC
p. 1969. For a similar demonstration of the control of facial selectivity of electrophilic additions across a C=C bond by neighboring groups, see, e.g., ref. [1b,3a] and the following.
Kočovský P, Stieborová I. J. Chem. Soc. Perkin Trans. 1
Kočovský P, Starý I, Zajíček J, Tureček F, Vašíčková S. J. Chem. Soc. Perkin Trans. 1. 1987 and references therein.
Isomura K, Okada N, Saruwatari M, Yamasaki H, Taniguchi H. Chem. Lett. 1985:385.
Ye X, Liu G, Popp BV, Stahl SS. J. Org. Chem. 2011;76:1031. PubMed PMC
McDonald RI, White PB, Weinstein AB, Tam CP, Stahl SS. J. Org. Chem. 2013;78:2083. PubMed PMC
p. 18594.
White PB, Stahl SS. J. Am. Chem. Soc. 133 PubMed PMC
Weinstein AB, Stahl SS. Angew. Chem. Int. Ed. 2011;51 PubMed PMC
Angew. Chem. 2012;124 ; for related cyclizations, where stereochemistry has not been addressed, see:
Lu Z, Stahl SS. Org. Lett. 2012;14 PubMed PMC
Joosten A, Persson AKÅ, Millet R, Johnson MT, Bäckvall J-E. Chem. Eur. J. 2012;18:15151. PubMed
p. 2243.
Bäckvall J-E, Gogoll A. Tetrahedron Lett. 29
Grennberg H, Gogoll A, Bäckvall JE. Organometallics. 1988;12
p. 1242.
Redford JE, McDonald RI, Rigsby KL, Wiensch JD, Stahl SS. Org. Lett. 14 ; for the use of DMSO, see: PubMed PMC
Diao T, White P, Guzei I, Stahl SS. Inorg. Chem. 2012;51 PubMed PMC
Yang G, Shen C, Zhang W. Angew. Chem. Int. Ed. 51:9141. PubMed
Angew. Chem. 2012;124
p. 4901.
Malkov AV, Lee DS, Barłóg M, Elsegood MRJ, Kočovský P. Chem. Eur. J. 20 ; See also: PubMed
Malkov AV, Derrien N, Barłóg M, Kočovský P. Chem. Eur. J. 2014;20
Weinstein AB, Schuman DP, Tan ZX, Stahl SS. Angew. Chem. Int. Ed. 52:11867. PubMed PMC
Angew. Chem. 2013;125
p. 3605.
Ney JE, Wolfe JP. Angew. Chem. Int. Ed. 43 PubMed
Angew. Chem. 2004;116
Bertrand MB, Neukom JD, Wolfe JP. J. Org. Chem. 2004;71 PubMed PMC
For a related cascade that features vinylation (with trans3. Babij NR, Wolfe JP. Angew. Chem. Int. Ed. 51:4128. -BrCH=CHSiMe ) rather than arylation, see:;
Angew. Chem. 2012;124
p. 927.
Dongol KG, Tay BY. Tetrahedron Lett. 47
Lemen GS, Giampietro NC, Hay MB, Wolfe JP. J. Org. Chem. 2006;74 PubMed PMC
Neukom JD, Perch NC, Wolfe JP. J. Am. Chem. Soc. 2010;132:6276. PubMed
Hanley PC, Marković D, Hartwig JF. J. Am. Chem. Soc. 2010;132:6302. PubMed
Hopkins BA, Wolfe JP. Angew. Chem. Int. Ed. 51:9886. PubMed PMC
Angew. Chem. 2012;124
Sibbald PA, Rosewall CF, Swartz RD, Michael FE. J. Am. Chem. Soc. 2009;131:15945. PubMed
Zavesky BP, Babij NR, Fritz JA, Wolfe JP. Org. Lett. 2013;15:5420. PubMed PMC
Babij NR, Wolfe JP. Angew. Chem. Int. Ed. 52:9247. PubMed PMC
Angew. Chem. 2013;125
Alicea J, Wolfe JP. J. Org. Chem. 2014;79:4212. PubMed PMC
Schultz DM, Wolfe JP. Synthesis. 2012:351. PubMed PMC
p. 14586.
Streuff J, Hövelmann CH, Nieger M, Muñiz K. J. Am. Chem. Soc. 127 PubMed
Muñiz K, Hövelmann CH, Campos-Gómez E, Barluenga J, González JM, Streuff J, Nieger M. Chem. Asian J. 2005;3 PubMed
Muñiz K, Streuff J, Chávez P, Hövelmann CH. Chem. Asian J. 2008;3 PubMed
Muñiz K, Martínez C. J. Org. Chem. 2008;78 PubMed
McDonald RI, Stahl SS. Angew. Chem. Int. Ed. 2013;49
Angew. Chem. 2010;122
A similar displacement of [Pd] by a neighboring group has been mentioned in ref. [19]
Muñiz K. J. Am. Chem. Soc. 2007;129:14542. PubMed
Note that a synendo -addition in the 5- process would be difficult.
p. 3994.
Tamaru Y, Hojo M, Higashimura H, Yoshida Z. J. Am. Chem. Soc. 110 ; for an overview, see:
Tamaru Y, Yoshida Z. J. Organomet. Chem. 1988;334
p. 5731.
Tamaru Y, Hojo M, Yoshida Z. J. Org. Chem. 53
Harayama H, Abe A, Sakado T, Kimura M, Fugami K, Tanaka S, Tamaru Y. J. Org. Chem. 1988;62 PubMed
Malkov AV, Barłóg M, Miller-Potucká L, Kabeshov MA, Farrugia L, Kočovský P. Chem. Eur. J. 2012;18:6873. PubMed
The earlier studies on this type of Pd-catalyzed reactions did not address the stereochemistry issue: p. 4225.
Bates RW, Sa-Ei K. Org. Lett. 4 PubMed
Bates RW, Boonsombat J. Org. Biomol. Chem. 2002;3 PubMed
Liu G, Stahl SS. J. Am. Chem. Soc. 2006;128:7179. PubMed
Martínez C, Wu Y, Weinstein AB, Stahl SS, Liu G, Muñiz K. J. Org. Chem. 2013;78:6309. PubMed PMC
Fles D, Majhofer B, Kovac M. Tetrahedron. 1968;24:3053.
For the stereochemistry of Pd displacement with nucleophiles, see ref. [16, 19 a, 33, 35], and the following: p. 200.
Coulson DR. J. Am. Chem. Soc. 91
Wong PK, Stille JK. J. Organomet. Chem. 1969;64–83
Zhu G, Ma S, Lu X, Huang Q. J. Chem. Soc. Chem. Commun. 1974
Kočovský P, Dunn V, Gogoll A, Langer V. J. Org. Chem. 1995;64 For the palladium(IV) intermediates, the S 2 inversion mechanism has been widely accepted; see ref. [66, 79] an the following: PubMed
Muñiz K. Angew. Chem. Int. Ed. 1999;48
Angew. Chem. 2009;121
Sibbald PA, Michael FE. Org. Lett. 2009;11 PubMed
Qiu S, Xu T, Zhou J, Guo Y, Liu G. J. Am. Chem. Soc. 2009;132 PubMed
The story is further complicated by the use of the erythrothreosynanti. p. 557. nomenclature, which is in conflict with the original Fischer notation. To avoid further confusion, we adhere to the symbolism:
Masamune S, Ali SA, Snitman DL, Garvey DS. Angew. Chem. Int. Ed. Engl. 19
Angew. Chem. 1980;92 For an extended discussion, see:
Eliel EL, Wilen SH, Mander LN. Stereochemistry of Organic Compounds. New York: Wiley; 1980. p. .
For this effect, see: p. 1166.
Nettekoven U, Hartwig JF. J. Am. Chem. Soc. 124 PubMed
Johns AM, Utsunomiya M, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2002;128 PubMed
Martínez C, Muñiz K. Angew. Chem. Int. Ed. 51:7031. PubMed
Angew. Chem. 2012;124