Competing Mechanisms in Palladium-Catalyzed Alkoxycarbonylation of Styrene

. 2024 Apr 19 ; 14 (8) : 5710-5719. [epub] 20240401

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38660606

Palladium-catalyzed carbonylation is a versatile method for the synthesis of various aldehydes, esters, lactones, or lactams. Alkoxycarbonylation of alkenes with carbon monoxide and alcohol produces either saturated or unsaturated esters as a result of two distinct catalytic cycles. The existing literature presents an inconsistent account of the procedures favoring oxidative carbonylation products. In this study, we have monitored the intermediates featured in both catalytic cycles of the methoxycarbonylation of styrene PhCH=CH2 as a model substrate, including all short-lived intermediates, using mass spectrometry. Comparing the reaction kinetics of the intermediates in both cycles in the same reaction mixture shows that the reaction proceeding via alkoxy intermediate [PdII]-OR, which gives rise to the unsaturated product PhCH=CHCO2Me, is faster. However, with an advancing reaction time, the gradually changing reaction conditions begin to favor the catalytic cycle dominated by palladium hydride [PdII]-H and alkyl intermediates, affording the saturated products PhCH2CH2CO2Me and PhCH(CO2Me)CH3 preferentially. The role of the oxidant proved to be crucial: using p-benzoquinone results in a gradual decrease of the pH during the reaction, swaying the system from oxidative conditions toward the palladium hydride cycle. By contrast, copper(II) acetate as an oxidant guards the pH within the 5-7 range and facilitates the formation of the alkoxy palladium complex [PdII]-OR, which favors the oxidative reaction producing PhCH=CHCO2Me with high selectivity. Hence, it is the oxidant, rather than the catalyst, that controls the reaction outcome by a mechanistic switch. Unraveling these principles broadens the scope for developing alkoxycarbonylation reactions and their application in organic synthesis.

Zobrazit více v PubMed

Peng J.-B.; Geng H.-Q.; Wu X.-F. The Chemistry of CO: Carbonylation. Chem 2019, 5 (3), 526–552. 10.1016/j.chempr.2018.11.006. DOI

Ma K.; Martin B. S.; Yin X.; Dai M. Natural Product Syntheses via Carbonylative Cyclizations. Nat. Prod. Rep. 2019, 36 (1), 174–219. 10.1039/C8NP00033F. PubMed DOI

Haynes A.CarbonylationReactions. In Comprehensive Inorganic ChemistryII; Elsevier, 2013; Vol. 6, pp. 1–24.. 10.1016/B978-0-08-097774-4.00601-X. DOI

Wu X. F.; Fang X.; Wu L.; Jackstell R.; Neumann H.; Beller M. Transition-Metal-Catalyzed Carbonylation Reactions of Olefins and Alkynes: A Personal Account. Acc. Chem. Res. 2014, 47 (4), 1041–1053. 10.1021/ar400222k. PubMed DOI

Bai Y.; Davis D. C.; Dai M. Natural Product Synthesis via Palladium-Catalyzed Carbonylation. J. Org. Chem. 2017, 82 (5), 2319–2328. 10.1021/acs.joc.7b00009. PubMed DOI

Sims H. S.; Dai M. Palladium-Catalyzed Carbonylations: Application in Complex Natural Product Total Synthesis and Recent Developments. J. Org. Chem. 2023, 88 (8), 4925–4941. 10.1021/acs.joc.2c02746. PubMed DOI PMC

Kočovský P.; Bäckvall J. E. The Syn/Anti-Dichotomy in the Palladium-Catalyzed Addition of Nucleophiles to Alkenes. Chem. - A Eur. J. 2015, 21 (1), 36–56. 10.1002/chem.201404070. PubMed DOI PMC

Semmelhack M. F.; Bodurow C. Intramolecular Alkoxypalladation/Carbonylation of Alkenes. J. Am. Chem. Soc. 1984, 106 (5), 1496–1498. 10.1021/ja00317a059. DOI

Kočovský P.; Pour M. Stereo- and Regiocontrol of Electrophilic Additions to Cyclohexene Systems by Neighboring Groups. Competition of Electronic and Stereoelectronic Effects and Comparison of the Reactivity of Selected Electrophiles. J. Org. Chem. 1990, 55 (21), 5580–5589. 10.1021/jo00308a014. DOI

Malkov A. V.; Barłóg M.; Miller-Potucká L.; Kabeshov M. A.; Farrugia L. J.; Kočovský P. Stereoselective Palladium-Catalyzed Functionalization of Homoallylic Alcohols: A Convenient Synthesis of Di- and Trisubstituted Isoxazolidines and β-Amino-δ-HydroxyEsters. Chem. - A Eur. J. 2012, 18 (22), 6873–6884. 10.1002/chem.201102716. PubMed DOI

Nobbs J. D.; Low C. H.; Stubbs L. P.; Wang C.; Drent E.; van Meurs M. Isomerizing Methoxycarbonylation of Alkenes to Esters Using a Bis(Phosphorinone)XylenePalladium Catalyst. Organometallics 2017, 36 (2), 391–398. 10.1021/acs.organomet.6b00813. DOI

Vieira T. O.; Green M. J.; Alper H. Highly Regioselective Anti-Markovnikov Palladium-Borate-Catalyzed Methoxycarbonylation Reactions: Unprecedented Results for Aryl Olefins. Org. Lett. 2006, 8 (26), 6143–6145. 10.1021/ol062646n. PubMed DOI

Williams D. B. G.; Shaw M. L.; Green M. J.; Holzapfel C. W. Aluminum Triflate as a Highly Active and Efficient Nonprotic Cocatalyst in the Palladium-Catalyzed Methoxycarbonylation Reaction. Angew. Chem. Int. Ed. 2008, 47 (3), 560–563. 10.1002/anie.200702889. PubMed DOI

Klingshirn M. A.; Rogers R. D.; Shaughnessy K. H. Palladium-Catalyzed Hydroesterification of Styrene Derivatives in the Presence of Ionic Liquids. J. Organomet. Chem. 2005, 690 (15), 3620–3626. 10.1016/j.jorganchem.2005.05.031. DOI

Yao Y.; Zou X.; Wang Y.; Yang H.; Ren Z.; Guan Z. Palladium-Catalyzed Asymmetric Markovnikov Hydroxycarbonylation and Hydroalkoxycarbonylation of Vinyl Arenes: Synthesis of 2-Arylpropanoic Acids. Angew. Chem. Int. Ed. 2021, 60 (43), 23117–23122. 10.1002/anie.202107856. PubMed DOI

Li H.; Dong K.; Jiao H.; Neumann H.; Jackstell R.; Beller M. The Scope and Mechanism of Palladium-Catalysed Markovnikov Alkoxycarbonylation of Alkenes. Nat. Chem. 2016, 8 (12), 1159–1166. 10.1038/nchem.2586. PubMed DOI

Aguirre P. A.; Lagos C. A.; Moya S. A.; Zúñiga C.; Vera-Oyarce C.; Sola E.; Peris G.; Bayón J. C. Methoxycarbonylation of Olefins Catalyzed by Palladium Complexes Bearing P,N-Donor Ligands. Dalton Trans. 2007, (46), 5419.10.1039/b704615b. PubMed DOI

Fini F.; Beltrani M.; Mancuso R.; Gabriele B.; Carfagna C. Selective Aryl α-Diimine/Palladium-Catalyzed Bis-Alkoxy- Carbonylation of Olefins for the Synthesis of Substituted Succinic Diesters. Adv. Synth. Catal. 2015, 357 (1), 177–184. 10.1002/adsc.201400501. DOI

Bianchini C.; Man Lee H.; Mantovani G.; Meli A.; Oberhauser W. Bis-Alkoxycarbonylation of Styrene by Pyridinimine Palladium Catalysts. New J. Chem. 2002, 26 (4), 387–397. 10.1039/b108804c. DOI

Dai M.; Wang C.; Dong G.; Xiang J.; Luo T.; Liang B.; Chen J.; Yang Z. Development of Thiourea-Based Ligands for the Palladium-Catalyzed Bis(Methoxycarbonylation) of Terminal Olefins. Eur. J. Org. Chem. 2003, 2003 (22), 4346–4348. 10.1002/ejoc.200300543. DOI

Hayashi M.; Takezaki H.; Hashimoto Y.; Takaoki K.; Saigo K. Phosphine Sulfides: Novel Effective Ligands for the Palladium-Catalyzed Bisalkoxycarbonylation of Olefins. Tetrahedron Lett. 1998, 39 (41), 7529–7532. 10.1016/S0040-4039(98)01637-2. DOI

Bianchini C.; Mantovani G.; Meli A.; Oberhauser W.; Brüggeller P.; Stampfl T. Novel Diphosphine-Modified Palladium Catalysts for Oxidative Carbonylation of Styrene to Methyl Cinnamate. J. Chem. Soc. Dalton Trans. 2001, 2 (5), 690–698. 10.1039/b009635k. DOI

Wang L.; Wang Y.; Liu C.; Lei A. CO/C-H as an Acylating Reagent: A Palladium-Catalyzed Aerobic Oxidative Carbonylative Esterification of Alcohols. Angew. Chem. Int. Ed. 2014, 53 (22), 5657–5661. 10.1002/anie.201400612. PubMed DOI

Malkov A. V.; Derrien N.; Barłóg M.; Kočovský P. Palladium-Catalyzed Alkoxycarbonylation of Terminal Alkenes To Produce α,β-Unsaturated Esters: The Key Role of Acetonitrile as a Ligand. Chem. - A Eur. J. 2014, 20 (16), 4542–4547. 10.1002/chem.201304798. PubMed DOI

Maffei M.; Giacoia G.; Mancuso R.; Gabriele B.; Motti E.; Costa M.; Della Ca’ N. A Highly Efficient Pd/CuI-Catalyzed Oxidative Alkoxycarbonylation of α-Olefins to Unsaturated Esters. J. Mol. Catal. A: Chem. 2017, 426, 435–443. 10.1016/j.molcata.2016.07.011. DOI

Bajracharya G.; Koranne P.; Tsujihara T.; Takizawa S.; Onitsuka K.; Sasai H. Dicationic Palladium(II)-SpiroBis(Isoxazoline) Complex for Highly Enantioselective Isotactic Copolymerizationof CO with Styrene Derivatives. Synlett 2009, 2009 (2), 310–314. 10.1055/s-0028-1087667. DOI

Muñoz B. K.; Godard C.; Marinetti A.; Ruiz A.; Benet-Buchholz J.; Claver C. Pd-Catalysed Methoxycarbonylation of Vinylarenes Using Chiral Monodentate Phosphetanes and Phospholane as Ligands. Effect of Substrate Substituents on Enantioselectivity. Dalton Trans. 2007, (47), 5524.10.1039/b705230h. PubMed DOI

Kalck P.; Urrutigoïty M.; Dechy-Cabaret O. Hydroxy- and Alkoxycarbonylations of Alkenes and Alkynes. Top. Organomet. Chem. 2006, 18, 97–123. 10.1007/3418_018. DOI

Brennführer A.; Neumann H.; Beller M. Palladium-Catalyzed CarbonylationReactions of Alkenes and Alkynes. ChemCatchem 2009, 1 (1), 28–41. 10.1002/cctc.200900062. DOI

Liu J.; Heaton B. T.; Iggo J. A.; Whyman R. Methanolysis of Acyl–Pd(ii) Complexes Relevant to CO/Ethene Coupling Reactions. Chem. Commun. 2004, (11), 1326–1327. 10.1039/B402275K. PubMed DOI

Tooze R. P.; Whiston K.; Malyan A. P.; Taylor M. J.; Wilson N. W. Evidence for the Hydride Mechanism in the Methoxycarbonylation of Ethene Catalysedby Palladium-Triphenylphosphine Complexes. J. Chem. Soc. Dalton Trans. 2000, (19), 3441–3444. 10.1039/b005232i. DOI

Bianchini C.; Meli A.; Oberhauser W.; Parisel S.; Gusev O. V.; Kal’sin A. M.; Vologdin N. V.; Dolgushin F. M. Methoxycarbonylation of Styrene to Methyl Arylpropanoates Catalyzed by Palladium(II) Precursors with 1,1′-Bis(Diphenylphosphino)Metallocenes. J. Mol. Catal. A: Chem. 2004, 224 (1–2), 35–49. 10.1016/j.molcata.2004.06.029. DOI

Muñoz B. K.; Santos Garcia E.; Godard C.; Zangrando E.; Bo C.; Ruiz A.; Claver C. HP-NMR Study of the Pd-Catalyzed Methoxycarbonylation of Styrene Using Monodentate and Bidentate Phosphane-Modified Systems. Eur. J. Inorg. Chem. 2008, 2008 (29), 4625–4637. 10.1002/ejic.200800502. DOI

Eastham G. R.; Tooze R. P.; Kilner M.; Foster D. F.; Cole-Hamilton D. J. Deuterium Labelling Evidence for a Hydride Mechanism in the Formation of Methyl Propanoate from Carbon Monoxide, Ethene and Methanol Catalysed by a Palladium Complex. J. Chem. Soc. Dalton Trans. 2002, 8, 1613–1617. 10.1039/b201514e. DOI

Eastham G. R.; Tooze R. P.; Heaton B. T.; Iggo J. A.; Whyman R.; Zacchini S. Synthesis and Spectroscopic Characterisation of All the Intermediates in the Pd-Catalysed Methoxycarbonylation of Ethene. Chem. Commun. 2000, (7), 609–610. 10.1039/b001110j. DOI

Del Río I.; Claver C.; van Leeuwen P. W. N. M. On the Mechanism of the Hydroxycarbonylation of Styrene with Palladium Systems. Eur. J. Inorg. Chem. 2001, 2001 (11), 2719.10.1002/1099-0682(200111)2001:11<2719:AID-EJIC2719>3.0.CO;2-5. DOI

Seayad A.; Jayasree S.; Damodaran K.; Toniolo L.; Chaudhari R. V. On the Mechanism of Hydroesterification of Styrene Using an in Situ-Formed Cationic Palladium Complex. J. Organomet. Chem. 2000, 601 (1), 100–107. 10.1016/S0022-328X(00)00041-3. DOI

Naigre R.; Chenal T.; Ciprés I.; Kalck P.; Daran J. C.; Vaissermann J. Carbon Monoxideas a Building Block in Organic Synthesis. Part V. Involvement of Palladium-Hydride Species in Carbonylation Reactions of Monoterpenes. X-Ray Crystal Structure of [Ph3PCH2CHCHPh]4[PdCl6][SnCl6]. J. Organomet. Chem. 1994, 480 (1–2), 91–102. 10.1016/0022-328X(94)87106-X. DOI

Clegg W.; Eastham G. R.; Elsegood M. R. J.; Heaton B. T.; Iggo J. A.; Tooze R. P.; Whyman R.; Zacchini S. Characterization and Dynamics of [Pd(L–L)H(Solv)] + , [Pd(L–L)(CH 2 CH 3)] + , and [Pd(L–L)(C(O)Et)(THF)] + (L–L = 1,2-(CH 2 PBu t 2) 2 C 6 H 4): Key Intermediates in the Catalytic Methoxycarbonylation of Ethene to Methylpropanoate. Organometallics 2002, 21 (9), 1832–1840. 10.1021/om010938g. DOI

Ahmad S.; Bühl M. Computational Modelling of Pd-Catalysed Alkoxycarbonylation of Alkenes and Alkynes. Phys. Chem. Chem. Phys. 2021, 23 (30), 15869–15880. 10.1039/D1CP02426D. PubMed DOI

Gallarati S.; Dingwall P.; Fuentes J. A.; Bühl M.; Clarke M. L. Understanding Catalyst Structure–Selectivity Relationships in Pd-Catalyzed Enantioselective Methoxycarbonylation of Styrene. Organometallics 2020, 39 (24), 4544–4556. 10.1021/acs.organomet.0c00613. DOI

Amadio E.; Cavinato G.; Dolmella A.; Toniolo L. Catalytic Properties of [Pd(COOMe)NX2-n(PPh 3)2] (n= 0, 1, 2; X = Cl, NO2, ONO 2, OAc and OTs) in the Oxidative Carbonylation of MeOH. Inorg. Chem. 2010, 49 (8), 3721–3729. 10.1021/ic901569w. PubMed DOI

Liu J.; Heaton B. T.; Iggo J. A.; Whyman R.; Bickley J. F.; Steiner A. The Mechanism of the Hydroalkoxycarbonylation of Ethene and Alkene-CO Copolymerization Catalyzed by PdII-Diphosphine Cations. Chem. - A Eur. J. 2006, 12 (16), 4417–4430. 10.1002/chem.200501398. PubMed DOI

Bancroft D. P.; Cotton F. A.; Verbruggen M. Trans-(Dimethyl Sulfoxide-O)(Dimethyl Sulfoxide-S)Bis(Trifluoroacetato)Palladium(II); Alternative Ligation Modes of an Ambidentate Ligand. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1989, 45 (9), 1289–1292. 10.1107/S0108270189001459. DOI

Diao T.; White P.; Guzei I.; Stahl S. S. Characterization of DMSO Coordination to Palladium(II) in Solution and Insights into the Aerobic Oxidation Catalyst, Pd(DMSO) 2 (TFA) 2. Inorg. Chem. 2012, 51 (21), 11898–11909. 10.1021/ic301799p. PubMed DOI PMC

Brasche G.; García-Fortanet J.; Buchwald S. L. Twofold C–H Functionalization: Palladium-Catalyzed Ortho Arylation of Anilides. Org. Lett. 2008, 10 (11), 2207–2210. 10.1021/ol800619c. PubMed DOI PMC

McDonald R. I.; Stahl S. S. Modular Synthesis of 1,2-Diamine Derivatives by Palladium-Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides. Angew. Chemie Int. Ed. 2010, 49 (32), 5529–5532. 10.1002/anie.200906342. PubMed DOI PMC

Diao T.; Stahl S. S. Synthesis of Cyclic Enones via Direct Palladium-Catalyzed Aerobic Dehydrogenation of Ketones. J. Am. Chem. Soc. 2011, 133 (37), 14566–14569. 10.1021/ja206575j. PubMed DOI PMC

Lu Z.; Stahl S. S. Intramolecular Pd(II)-Catalyzed Aerobic Oxidative Amination of Alkenes: Synthesis of Six-Membered N -Heterocycles. Org. Lett. 2012, 14 (5), 1234–1237. 10.1021/ol300030w. PubMed DOI PMC

Weinstein A. B.; Schuman D. P.; Tan Z. X.; Stahl S. S. Synthesis of Vicinal Aminoalcohols by Stereoselective Aza-Wacker Cyclizations: Access to (−)-Acosamine by Redox Relay. Angew. Chemie Int. Ed. 2013, 52 (45), 11867–11870. 10.1002/anie.201305926. PubMed DOI PMC

Malkov A. V.; Lee D. S.; Barłóg M.; Elsegood M. R. J.; Kočovský P. Palladium-Catalyzed Stereoselective Intramolecular Oxidative Amidation of Alkenes in the Synthesis of 1,3- and 1,4-Amino Alcohols and 1,3-Diamines. Chem. - A Eur. J. 2014, 20 (17), 4901–4905. 10.1002/chem.201400123. PubMed DOI

Cometti G.; Chiusoli G. P. Palladium-Catalysed Synthesis of the Cinnamic Methyl Ester from Styrene, Carbon Monoxide and Methanol. J. Organomet. Chem. 1979, 181 (2), C14–C16. 10.1016/S0022-328X(00)82840-5. DOI

Santos L. S. Online Mechanistic Investigations of Catalyzed Reactions by Electrospray Ionization Mass Spectrometry: A Tool to Intercept Transient Species in Solution. Eur. J. Org. Chem. 2008, 2008 (2), 235–253. 10.1002/ejoc.200700723. DOI

Mehara J.; Roithová J. Identifying Reactive Intermediates by Mass Spectrometry. Chem. Sci. 2020, 11 (44), 11960–11972. 10.1039/D0SC04754F. PubMed DOI PMC

Vikse K. L.; Henderson M. A.; Oliver A. G.; McIndoe J. S. Direct Observation of Key Intermediates by Negative-Ion Electrospray Ionisation Mass Spectrometry in Palladium-Catalysed Cross-Coupling. Chem. Commun. 2010, 46 (39), 7412–7414. 10.1039/c0cc02773a. PubMed DOI

Hanzlova E.; Váňa J.; Shaffer C. J.; Roithová J.; Martinu T. Evidence for the Cyclic CN 2 Carbene in the Gas Phase. Org. Lett. 2014, 16 (20), 5482–5485. 10.1021/ol5027602. PubMed DOI

Surendran A. K.; Tripodi G. L.; Pluhařová E.; Pereverzev A. Y.; Bruekers J. P. J.; Elemans J. A. A. W.; Meijer E. J.; Roithová J. Host-guest Tuning of the CO2 Reduction Activity of an Iron Porphyrin Cage. Nat. Sci. 2023, 3, 1.10.1002/ntls.20220019. DOI

Crabtree R. H.The Organometallic Chemistry of the Transition Metals; John Wiley and Sons: Hoboken, NJ, 2014.

Thomas G. T.; Donnecke S.; Chagunda I. C.; McIndoe J. S. Pressurized Sample Infusion. Chem.–methods 2022, 2, e20210006810.1002/cmtd.202100068. DOI

Bütikofer A.; Chen P. Cyclopentadienone Iron Complex-Catalyzed Hydrogenation of Ketones: An Operando Spectrometric Study Using Pressurized Sample Infusion-Electrospray Ionization-Mass Spectrometry. Organometallics 2022, 41 (16), 2349–2364. 10.1021/acs.organomet.2c00341. DOI

Jašíková L.; Anania M.; Hybelbauerová S.; Roithová J. Reaction Intermediates Kinetics in Solution Investigated by Electrospray Ionization Mass Spectrometry: Diaurated Complexes. J. Am. Chem. Soc. 2015, 137 (42), 13647–13657. 10.1021/jacs.5b08744. PubMed DOI

Duez Q.; Tinnemans P.; Elemans J. A. A. W.; Roithová J. Kinetics of Ligand Exchange in Solution: A Quantitative Mass Spectrometry Approach. Chem. Sci. 2023, 14 (36), 9759–9769. 10.1039/D3SC03342B. PubMed DOI PMC

Meija J.; Mester Z. Paradigms in Isotope Dilution Mass Spectrometry for Elemental Speciation Analysis. Anal. Chim. Acta 2008, 607 (2), 115–125. 10.1016/j.aca.2007.11.050. PubMed DOI

Kočovský P. Intramolecular Alkoxymercuration of Olefins and Stabilization of the Resulting Organomercurials. Organometallics 1993, 12 (5), 1969–1971. 10.1021/om00029a063. DOI

Bäckvall J.-E.; Gogoll A. Evidence for (π-allyl)palladium(II)(quinone) complexes in the palladium-catalyzed 1,4-diacetoxylation of conjugated dienes. Tetrahedron Lett. 1988, 29, 2243–2246. 10.1016/S0040-4039(00)86722-2. DOI

Grennberg H.; Gogoll A.; Bäckvall J.-E. Acid-Induced Transformations of Palladium(0)-Benzoquinone complexes to Palladium(II) and hydroquinone. Organometallics 1993, 12, 1790–1793. 10.1021/om00029a040. DOI

Bäckvall J.-E. Recent Developments in palladium-catalyzed oxidation. Pure Appl. Chem. 1996, 68, 535–538. 10.1351/pac199668030535. DOI

Amatore C.; Cammoun C.; Jutand A. Pd(OAc)2/p-Benzoquinone-Catalyzed Anaerobic Electrooxidative Homocoupling of Arylboronic Acids, Arylboronates and Aryltrifluoroboronates in DMF and/or Water. Eur. J. Org. Chem. 2008, 27, 4567–4570. 10.1002/ejoc.200800631. DOI

McMurry J. E.; Kočotovský P. A method for the palladium-catalyzed oxidation of olefins. Tetrahedron Lett. 1984, 25, 4187–4190. 10.1016/S0040-4039(01)81391-5. DOI

Hansson S.; Heumann A.; Rein T.; Åkermark B. Preparation of allylic acetates from simple alkenes by palladium(II)-catalyzed acetoxylation. J. Org. Chem. 1990, 55, 975–984. 10.1021/jo00290a031. DOI

Chen M. S.; White M. C. A sulfoxide-promoted, catalytic method for the regioselective synthesis of allylic acetates from monosubstituted olefins via C-H oxidation. J. Am. Chem. Soc. 2004, 126, 1346.10.1021/ja039107n. PubMed DOI

Chen M. S.; Narayanasamy P.; Labenz N. A.; White M. C. Serial Ligand Catalysis: A Highly Selective Allylic C–H Oxidation. J. Am. Chem. Soc. 2005, 127, 6970.10.1021/ja0500198. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...