Competing Mechanisms in Palladium-Catalyzed Alkoxycarbonylation of Styrene
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38660606
PubMed Central
PMC11036401
DOI
10.1021/acscatal.4c00966
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Palladium-catalyzed carbonylation is a versatile method for the synthesis of various aldehydes, esters, lactones, or lactams. Alkoxycarbonylation of alkenes with carbon monoxide and alcohol produces either saturated or unsaturated esters as a result of two distinct catalytic cycles. The existing literature presents an inconsistent account of the procedures favoring oxidative carbonylation products. In this study, we have monitored the intermediates featured in both catalytic cycles of the methoxycarbonylation of styrene PhCH=CH2 as a model substrate, including all short-lived intermediates, using mass spectrometry. Comparing the reaction kinetics of the intermediates in both cycles in the same reaction mixture shows that the reaction proceeding via alkoxy intermediate [PdII]-OR, which gives rise to the unsaturated product PhCH=CHCO2Me, is faster. However, with an advancing reaction time, the gradually changing reaction conditions begin to favor the catalytic cycle dominated by palladium hydride [PdII]-H and alkyl intermediates, affording the saturated products PhCH2CH2CO2Me and PhCH(CO2Me)CH3 preferentially. The role of the oxidant proved to be crucial: using p-benzoquinone results in a gradual decrease of the pH during the reaction, swaying the system from oxidative conditions toward the palladium hydride cycle. By contrast, copper(II) acetate as an oxidant guards the pH within the 5-7 range and facilitates the formation of the alkoxy palladium complex [PdII]-OR, which favors the oxidative reaction producing PhCH=CHCO2Me with high selectivity. Hence, it is the oxidant, rather than the catalyst, that controls the reaction outcome by a mechanistic switch. Unraveling these principles broadens the scope for developing alkoxycarbonylation reactions and their application in organic synthesis.
Zobrazit více v PubMed
Peng J.-B.; Geng H.-Q.; Wu X.-F. The Chemistry of CO: Carbonylation. Chem 2019, 5 (3), 526–552. 10.1016/j.chempr.2018.11.006. DOI
Ma K.; Martin B. S.; Yin X.; Dai M. Natural Product Syntheses via Carbonylative Cyclizations. Nat. Prod. Rep. 2019, 36 (1), 174–219. 10.1039/C8NP00033F. PubMed DOI
Haynes A.CarbonylationReactions. In Comprehensive Inorganic ChemistryII; Elsevier, 2013; Vol. 6, pp. 1–24.. 10.1016/B978-0-08-097774-4.00601-X. DOI
Wu X. F.; Fang X.; Wu L.; Jackstell R.; Neumann H.; Beller M. Transition-Metal-Catalyzed Carbonylation Reactions of Olefins and Alkynes: A Personal Account. Acc. Chem. Res. 2014, 47 (4), 1041–1053. 10.1021/ar400222k. PubMed DOI
Bai Y.; Davis D. C.; Dai M. Natural Product Synthesis via Palladium-Catalyzed Carbonylation. J. Org. Chem. 2017, 82 (5), 2319–2328. 10.1021/acs.joc.7b00009. PubMed DOI
Sims H. S.; Dai M. Palladium-Catalyzed Carbonylations: Application in Complex Natural Product Total Synthesis and Recent Developments. J. Org. Chem. 2023, 88 (8), 4925–4941. 10.1021/acs.joc.2c02746. PubMed DOI PMC
Kočovský P.; Bäckvall J. E. The Syn/Anti-Dichotomy in the Palladium-Catalyzed Addition of Nucleophiles to Alkenes. Chem. - A Eur. J. 2015, 21 (1), 36–56. 10.1002/chem.201404070. PubMed DOI PMC
Semmelhack M. F.; Bodurow C. Intramolecular Alkoxypalladation/Carbonylation of Alkenes. J. Am. Chem. Soc. 1984, 106 (5), 1496–1498. 10.1021/ja00317a059. DOI
Kočovský P.; Pour M. Stereo- and Regiocontrol of Electrophilic Additions to Cyclohexene Systems by Neighboring Groups. Competition of Electronic and Stereoelectronic Effects and Comparison of the Reactivity of Selected Electrophiles. J. Org. Chem. 1990, 55 (21), 5580–5589. 10.1021/jo00308a014. DOI
Malkov A. V.; Barłóg M.; Miller-Potucká L.; Kabeshov M. A.; Farrugia L. J.; Kočovský P. Stereoselective Palladium-Catalyzed Functionalization of Homoallylic Alcohols: A Convenient Synthesis of Di- and Trisubstituted Isoxazolidines and β-Amino-δ-HydroxyEsters. Chem. - A Eur. J. 2012, 18 (22), 6873–6884. 10.1002/chem.201102716. PubMed DOI
Nobbs J. D.; Low C. H.; Stubbs L. P.; Wang C.; Drent E.; van Meurs M. Isomerizing Methoxycarbonylation of Alkenes to Esters Using a Bis(Phosphorinone)XylenePalladium Catalyst. Organometallics 2017, 36 (2), 391–398. 10.1021/acs.organomet.6b00813. DOI
Vieira T. O.; Green M. J.; Alper H. Highly Regioselective Anti-Markovnikov Palladium-Borate-Catalyzed Methoxycarbonylation Reactions: Unprecedented Results for Aryl Olefins. Org. Lett. 2006, 8 (26), 6143–6145. 10.1021/ol062646n. PubMed DOI
Williams D. B. G.; Shaw M. L.; Green M. J.; Holzapfel C. W. Aluminum Triflate as a Highly Active and Efficient Nonprotic Cocatalyst in the Palladium-Catalyzed Methoxycarbonylation Reaction. Angew. Chem. Int. Ed. 2008, 47 (3), 560–563. 10.1002/anie.200702889. PubMed DOI
Klingshirn M. A.; Rogers R. D.; Shaughnessy K. H. Palladium-Catalyzed Hydroesterification of Styrene Derivatives in the Presence of Ionic Liquids. J. Organomet. Chem. 2005, 690 (15), 3620–3626. 10.1016/j.jorganchem.2005.05.031. DOI
Yao Y.; Zou X.; Wang Y.; Yang H.; Ren Z.; Guan Z. Palladium-Catalyzed Asymmetric Markovnikov Hydroxycarbonylation and Hydroalkoxycarbonylation of Vinyl Arenes: Synthesis of 2-Arylpropanoic Acids. Angew. Chem. Int. Ed. 2021, 60 (43), 23117–23122. 10.1002/anie.202107856. PubMed DOI
Li H.; Dong K.; Jiao H.; Neumann H.; Jackstell R.; Beller M. The Scope and Mechanism of Palladium-Catalysed Markovnikov Alkoxycarbonylation of Alkenes. Nat. Chem. 2016, 8 (12), 1159–1166. 10.1038/nchem.2586. PubMed DOI
Aguirre P. A.; Lagos C. A.; Moya S. A.; Zúñiga C.; Vera-Oyarce C.; Sola E.; Peris G.; Bayón J. C. Methoxycarbonylation of Olefins Catalyzed by Palladium Complexes Bearing P,N-Donor Ligands. Dalton Trans. 2007, (46), 5419.10.1039/b704615b. PubMed DOI
Fini F.; Beltrani M.; Mancuso R.; Gabriele B.; Carfagna C. Selective Aryl α-Diimine/Palladium-Catalyzed Bis-Alkoxy- Carbonylation of Olefins for the Synthesis of Substituted Succinic Diesters. Adv. Synth. Catal. 2015, 357 (1), 177–184. 10.1002/adsc.201400501. DOI
Bianchini C.; Man Lee H.; Mantovani G.; Meli A.; Oberhauser W. Bis-Alkoxycarbonylation of Styrene by Pyridinimine Palladium Catalysts. New J. Chem. 2002, 26 (4), 387–397. 10.1039/b108804c. DOI
Dai M.; Wang C.; Dong G.; Xiang J.; Luo T.; Liang B.; Chen J.; Yang Z. Development of Thiourea-Based Ligands for the Palladium-Catalyzed Bis(Methoxycarbonylation) of Terminal Olefins. Eur. J. Org. Chem. 2003, 2003 (22), 4346–4348. 10.1002/ejoc.200300543. DOI
Hayashi M.; Takezaki H.; Hashimoto Y.; Takaoki K.; Saigo K. Phosphine Sulfides: Novel Effective Ligands for the Palladium-Catalyzed Bisalkoxycarbonylation of Olefins. Tetrahedron Lett. 1998, 39 (41), 7529–7532. 10.1016/S0040-4039(98)01637-2. DOI
Bianchini C.; Mantovani G.; Meli A.; Oberhauser W.; Brüggeller P.; Stampfl T. Novel Diphosphine-Modified Palladium Catalysts for Oxidative Carbonylation of Styrene to Methyl Cinnamate. J. Chem. Soc. Dalton Trans. 2001, 2 (5), 690–698. 10.1039/b009635k. DOI
Wang L.; Wang Y.; Liu C.; Lei A. CO/C-H as an Acylating Reagent: A Palladium-Catalyzed Aerobic Oxidative Carbonylative Esterification of Alcohols. Angew. Chem. Int. Ed. 2014, 53 (22), 5657–5661. 10.1002/anie.201400612. PubMed DOI
Malkov A. V.; Derrien N.; Barłóg M.; Kočovský P. Palladium-Catalyzed Alkoxycarbonylation of Terminal Alkenes To Produce α,β-Unsaturated Esters: The Key Role of Acetonitrile as a Ligand. Chem. - A Eur. J. 2014, 20 (16), 4542–4547. 10.1002/chem.201304798. PubMed DOI
Maffei M.; Giacoia G.; Mancuso R.; Gabriele B.; Motti E.; Costa M.; Della Ca’ N. A Highly Efficient Pd/CuI-Catalyzed Oxidative Alkoxycarbonylation of α-Olefins to Unsaturated Esters. J. Mol. Catal. A: Chem. 2017, 426, 435–443. 10.1016/j.molcata.2016.07.011. DOI
Bajracharya G.; Koranne P.; Tsujihara T.; Takizawa S.; Onitsuka K.; Sasai H. Dicationic Palladium(II)-SpiroBis(Isoxazoline) Complex for Highly Enantioselective Isotactic Copolymerizationof CO with Styrene Derivatives. Synlett 2009, 2009 (2), 310–314. 10.1055/s-0028-1087667. DOI
Muñoz B. K.; Godard C.; Marinetti A.; Ruiz A.; Benet-Buchholz J.; Claver C. Pd-Catalysed Methoxycarbonylation of Vinylarenes Using Chiral Monodentate Phosphetanes and Phospholane as Ligands. Effect of Substrate Substituents on Enantioselectivity. Dalton Trans. 2007, (47), 5524.10.1039/b705230h. PubMed DOI
Kalck P.; Urrutigoïty M.; Dechy-Cabaret O. Hydroxy- and Alkoxycarbonylations of Alkenes and Alkynes. Top. Organomet. Chem. 2006, 18, 97–123. 10.1007/3418_018. DOI
Brennführer A.; Neumann H.; Beller M. Palladium-Catalyzed CarbonylationReactions of Alkenes and Alkynes. ChemCatchem 2009, 1 (1), 28–41. 10.1002/cctc.200900062. DOI
Liu J.; Heaton B. T.; Iggo J. A.; Whyman R. Methanolysis of Acyl–Pd(ii) Complexes Relevant to CO/Ethene Coupling Reactions. Chem. Commun. 2004, (11), 1326–1327. 10.1039/B402275K. PubMed DOI
Tooze R. P.; Whiston K.; Malyan A. P.; Taylor M. J.; Wilson N. W. Evidence for the Hydride Mechanism in the Methoxycarbonylation of Ethene Catalysedby Palladium-Triphenylphosphine Complexes. J. Chem. Soc. Dalton Trans. 2000, (19), 3441–3444. 10.1039/b005232i. DOI
Bianchini C.; Meli A.; Oberhauser W.; Parisel S.; Gusev O. V.; Kal’sin A. M.; Vologdin N. V.; Dolgushin F. M. Methoxycarbonylation of Styrene to Methyl Arylpropanoates Catalyzed by Palladium(II) Precursors with 1,1′-Bis(Diphenylphosphino)Metallocenes. J. Mol. Catal. A: Chem. 2004, 224 (1–2), 35–49. 10.1016/j.molcata.2004.06.029. DOI
Muñoz B. K.; Santos Garcia E.; Godard C.; Zangrando E.; Bo C.; Ruiz A.; Claver C. HP-NMR Study of the Pd-Catalyzed Methoxycarbonylation of Styrene Using Monodentate and Bidentate Phosphane-Modified Systems. Eur. J. Inorg. Chem. 2008, 2008 (29), 4625–4637. 10.1002/ejic.200800502. DOI
Eastham G. R.; Tooze R. P.; Kilner M.; Foster D. F.; Cole-Hamilton D. J. Deuterium Labelling Evidence for a Hydride Mechanism in the Formation of Methyl Propanoate from Carbon Monoxide, Ethene and Methanol Catalysed by a Palladium Complex. J. Chem. Soc. Dalton Trans. 2002, 8, 1613–1617. 10.1039/b201514e. DOI
Eastham G. R.; Tooze R. P.; Heaton B. T.; Iggo J. A.; Whyman R.; Zacchini S. Synthesis and Spectroscopic Characterisation of All the Intermediates in the Pd-Catalysed Methoxycarbonylation of Ethene. Chem. Commun. 2000, (7), 609–610. 10.1039/b001110j. DOI
Del Río I.; Claver C.; van Leeuwen P. W. N. M. On the Mechanism of the Hydroxycarbonylation of Styrene with Palladium Systems. Eur. J. Inorg. Chem. 2001, 2001 (11), 2719.10.1002/1099-0682(200111)2001:11<2719:AID-EJIC2719>3.0.CO;2-5. DOI
Seayad A.; Jayasree S.; Damodaran K.; Toniolo L.; Chaudhari R. V. On the Mechanism of Hydroesterification of Styrene Using an in Situ-Formed Cationic Palladium Complex. J. Organomet. Chem. 2000, 601 (1), 100–107. 10.1016/S0022-328X(00)00041-3. DOI
Naigre R.; Chenal T.; Ciprés I.; Kalck P.; Daran J. C.; Vaissermann J. Carbon Monoxideas a Building Block in Organic Synthesis. Part V. Involvement of Palladium-Hydride Species in Carbonylation Reactions of Monoterpenes. X-Ray Crystal Structure of [Ph3PCH2CHCHPh]4[PdCl6][SnCl6]. J. Organomet. Chem. 1994, 480 (1–2), 91–102. 10.1016/0022-328X(94)87106-X. DOI
Clegg W.; Eastham G. R.; Elsegood M. R. J.; Heaton B. T.; Iggo J. A.; Tooze R. P.; Whyman R.; Zacchini S. Characterization and Dynamics of [Pd(L–L)H(Solv)] + , [Pd(L–L)(CH 2 CH 3)] + , and [Pd(L–L)(C(O)Et)(THF)] + (L–L = 1,2-(CH 2 PBu t 2) 2 C 6 H 4): Key Intermediates in the Catalytic Methoxycarbonylation of Ethene to Methylpropanoate. Organometallics 2002, 21 (9), 1832–1840. 10.1021/om010938g. DOI
Ahmad S.; Bühl M. Computational Modelling of Pd-Catalysed Alkoxycarbonylation of Alkenes and Alkynes. Phys. Chem. Chem. Phys. 2021, 23 (30), 15869–15880. 10.1039/D1CP02426D. PubMed DOI
Gallarati S.; Dingwall P.; Fuentes J. A.; Bühl M.; Clarke M. L. Understanding Catalyst Structure–Selectivity Relationships in Pd-Catalyzed Enantioselective Methoxycarbonylation of Styrene. Organometallics 2020, 39 (24), 4544–4556. 10.1021/acs.organomet.0c00613. DOI
Amadio E.; Cavinato G.; Dolmella A.; Toniolo L. Catalytic Properties of [Pd(COOMe)NX2-n(PPh 3)2] (n= 0, 1, 2; X = Cl, NO2, ONO 2, OAc and OTs) in the Oxidative Carbonylation of MeOH. Inorg. Chem. 2010, 49 (8), 3721–3729. 10.1021/ic901569w. PubMed DOI
Liu J.; Heaton B. T.; Iggo J. A.; Whyman R.; Bickley J. F.; Steiner A. The Mechanism of the Hydroalkoxycarbonylation of Ethene and Alkene-CO Copolymerization Catalyzed by PdII-Diphosphine Cations. Chem. - A Eur. J. 2006, 12 (16), 4417–4430. 10.1002/chem.200501398. PubMed DOI
Bancroft D. P.; Cotton F. A.; Verbruggen M. Trans-(Dimethyl Sulfoxide-O)(Dimethyl Sulfoxide-S)Bis(Trifluoroacetato)Palladium(II); Alternative Ligation Modes of an Ambidentate Ligand. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1989, 45 (9), 1289–1292. 10.1107/S0108270189001459. DOI
Diao T.; White P.; Guzei I.; Stahl S. S. Characterization of DMSO Coordination to Palladium(II) in Solution and Insights into the Aerobic Oxidation Catalyst, Pd(DMSO) 2 (TFA) 2. Inorg. Chem. 2012, 51 (21), 11898–11909. 10.1021/ic301799p. PubMed DOI PMC
Brasche G.; García-Fortanet J.; Buchwald S. L. Twofold C–H Functionalization: Palladium-Catalyzed Ortho Arylation of Anilides. Org. Lett. 2008, 10 (11), 2207–2210. 10.1021/ol800619c. PubMed DOI PMC
McDonald R. I.; Stahl S. S. Modular Synthesis of 1,2-Diamine Derivatives by Palladium-Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides. Angew. Chemie Int. Ed. 2010, 49 (32), 5529–5532. 10.1002/anie.200906342. PubMed DOI PMC
Diao T.; Stahl S. S. Synthesis of Cyclic Enones via Direct Palladium-Catalyzed Aerobic Dehydrogenation of Ketones. J. Am. Chem. Soc. 2011, 133 (37), 14566–14569. 10.1021/ja206575j. PubMed DOI PMC
Lu Z.; Stahl S. S. Intramolecular Pd(II)-Catalyzed Aerobic Oxidative Amination of Alkenes: Synthesis of Six-Membered N -Heterocycles. Org. Lett. 2012, 14 (5), 1234–1237. 10.1021/ol300030w. PubMed DOI PMC
Weinstein A. B.; Schuman D. P.; Tan Z. X.; Stahl S. S. Synthesis of Vicinal Aminoalcohols by Stereoselective Aza-Wacker Cyclizations: Access to (−)-Acosamine by Redox Relay. Angew. Chemie Int. Ed. 2013, 52 (45), 11867–11870. 10.1002/anie.201305926. PubMed DOI PMC
Malkov A. V.; Lee D. S.; Barłóg M.; Elsegood M. R. J.; Kočovský P. Palladium-Catalyzed Stereoselective Intramolecular Oxidative Amidation of Alkenes in the Synthesis of 1,3- and 1,4-Amino Alcohols and 1,3-Diamines. Chem. - A Eur. J. 2014, 20 (17), 4901–4905. 10.1002/chem.201400123. PubMed DOI
Cometti G.; Chiusoli G. P. Palladium-Catalysed Synthesis of the Cinnamic Methyl Ester from Styrene, Carbon Monoxide and Methanol. J. Organomet. Chem. 1979, 181 (2), C14–C16. 10.1016/S0022-328X(00)82840-5. DOI
Santos L. S. Online Mechanistic Investigations of Catalyzed Reactions by Electrospray Ionization Mass Spectrometry: A Tool to Intercept Transient Species in Solution. Eur. J. Org. Chem. 2008, 2008 (2), 235–253. 10.1002/ejoc.200700723. DOI
Mehara J.; Roithová J. Identifying Reactive Intermediates by Mass Spectrometry. Chem. Sci. 2020, 11 (44), 11960–11972. 10.1039/D0SC04754F. PubMed DOI PMC
Vikse K. L.; Henderson M. A.; Oliver A. G.; McIndoe J. S. Direct Observation of Key Intermediates by Negative-Ion Electrospray Ionisation Mass Spectrometry in Palladium-Catalysed Cross-Coupling. Chem. Commun. 2010, 46 (39), 7412–7414. 10.1039/c0cc02773a. PubMed DOI
Hanzlova E.; Váňa J.; Shaffer C. J.; Roithová J.; Martinu T. Evidence for the Cyclic CN 2 Carbene in the Gas Phase. Org. Lett. 2014, 16 (20), 5482–5485. 10.1021/ol5027602. PubMed DOI
Surendran A. K.; Tripodi G. L.; Pluhařová E.; Pereverzev A. Y.; Bruekers J. P. J.; Elemans J. A. A. W.; Meijer E. J.; Roithová J. Host-guest Tuning of the CO2 Reduction Activity of an Iron Porphyrin Cage. Nat. Sci. 2023, 3, 1.10.1002/ntls.20220019. DOI
Crabtree R. H.The Organometallic Chemistry of the Transition Metals; John Wiley and Sons: Hoboken, NJ, 2014.
Thomas G. T.; Donnecke S.; Chagunda I. C.; McIndoe J. S. Pressurized Sample Infusion. Chem.–methods 2022, 2, e20210006810.1002/cmtd.202100068. DOI
Bütikofer A.; Chen P. Cyclopentadienone Iron Complex-Catalyzed Hydrogenation of Ketones: An Operando Spectrometric Study Using Pressurized Sample Infusion-Electrospray Ionization-Mass Spectrometry. Organometallics 2022, 41 (16), 2349–2364. 10.1021/acs.organomet.2c00341. DOI
Jašíková L.; Anania M.; Hybelbauerová S.; Roithová J. Reaction Intermediates Kinetics in Solution Investigated by Electrospray Ionization Mass Spectrometry: Diaurated Complexes. J. Am. Chem. Soc. 2015, 137 (42), 13647–13657. 10.1021/jacs.5b08744. PubMed DOI
Duez Q.; Tinnemans P.; Elemans J. A. A. W.; Roithová J. Kinetics of Ligand Exchange in Solution: A Quantitative Mass Spectrometry Approach. Chem. Sci. 2023, 14 (36), 9759–9769. 10.1039/D3SC03342B. PubMed DOI PMC
Meija J.; Mester Z. Paradigms in Isotope Dilution Mass Spectrometry for Elemental Speciation Analysis. Anal. Chim. Acta 2008, 607 (2), 115–125. 10.1016/j.aca.2007.11.050. PubMed DOI
Kočovský P. Intramolecular Alkoxymercuration of Olefins and Stabilization of the Resulting Organomercurials. Organometallics 1993, 12 (5), 1969–1971. 10.1021/om00029a063. DOI
Bäckvall J.-E.; Gogoll A. Evidence for (π-allyl)palladium(II)(quinone) complexes in the palladium-catalyzed 1,4-diacetoxylation of conjugated dienes. Tetrahedron Lett. 1988, 29, 2243–2246. 10.1016/S0040-4039(00)86722-2. DOI
Grennberg H.; Gogoll A.; Bäckvall J.-E. Acid-Induced Transformations of Palladium(0)-Benzoquinone complexes to Palladium(II) and hydroquinone. Organometallics 1993, 12, 1790–1793. 10.1021/om00029a040. DOI
Bäckvall J.-E. Recent Developments in palladium-catalyzed oxidation. Pure Appl. Chem. 1996, 68, 535–538. 10.1351/pac199668030535. DOI
Amatore C.; Cammoun C.; Jutand A. Pd(OAc)2/p-Benzoquinone-Catalyzed Anaerobic Electrooxidative Homocoupling of Arylboronic Acids, Arylboronates and Aryltrifluoroboronates in DMF and/or Water. Eur. J. Org. Chem. 2008, 27, 4567–4570. 10.1002/ejoc.200800631. DOI
McMurry J. E.; Kočotovský P. A method for the palladium-catalyzed oxidation of olefins. Tetrahedron Lett. 1984, 25, 4187–4190. 10.1016/S0040-4039(01)81391-5. DOI
Hansson S.; Heumann A.; Rein T.; Åkermark B. Preparation of allylic acetates from simple alkenes by palladium(II)-catalyzed acetoxylation. J. Org. Chem. 1990, 55, 975–984. 10.1021/jo00290a031. DOI
Chen M. S.; White M. C. A sulfoxide-promoted, catalytic method for the regioselective synthesis of allylic acetates from monosubstituted olefins via C-H oxidation. J. Am. Chem. Soc. 2004, 126, 1346.10.1021/ja039107n. PubMed DOI
Chen M. S.; Narayanasamy P.; Labenz N. A.; White M. C. Serial Ligand Catalysis: A Highly Selective Allylic C–H Oxidation. J. Am. Chem. Soc. 2005, 127, 6970.10.1021/ja0500198. PubMed DOI