Alterations in the basal ganglia in patients with brain tumours may be due to excessive iron deposition

. 2015 Jan ; 9 (1) : 43-46. [epub] 20141024

Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25435931

The accumulation of iron in the brain is a common physiological process. However, alterations in the deposition of iron or other paramagnetic substances are associated with various diseases. In the present study, the deposition of paramagnetic substances in patients with brain tumours was evaluated using T2 relaxometry. A total of 23 patients with untreated tumours or with recurrent tumours following treatment, together with a group of 19 age-matched healthy controls, were examined using T2 relaxometry at 3T. The relaxation times in the basal ganglia, thalamus and white matter were evaluated. Significantly lower T2 relaxation times were identified in the basal ganglia and thalamus of the patients with tumours, as compared with those of the controls (P<0.05). No statistically significant difference was identified between patients with untreated or recurrent brain tumours. The reduction in T2 relaxation times in the brain tumour patients was possibly caused by the accumulation of iron, since iron homeostasis is known to be altered in patients with tumours. We propose that increased iron deposition is a consequence of a higher risk of oxidative stress caused by an increased iron concentration in the plasma or cerebrospinal fluid.

Zobrazit více v PubMed

Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958;3:41–51. doi: 10.1111/j.1471-4159.1958.tb12607.x. PubMed DOI

Vymazal J, Babis M, Brooks RA, Filip K, Dezortova M, Hrncarkova H, Hajek M. T1 and T2 alterations in the brains of patients with hepatic cirrhosis. AJNR Am J Neuroradiol. 1996;17:333–336. PubMed PMC

Wolozin B, Golts N. Iron and Parkinson’s disease. Neuroscientist. 2002;8:22–32. doi: 10.1177/107385840200800107. PubMed DOI

Correia S, Hubbard E, Hassenstab J, et al. Basal ganglia MR relaxometry in obsessive-compulsive disorder: T2 depends upon age of symptom onset. Brain Imaging Behav. 2010;4:35–45. doi: 10.1007/s11682-009-9083-2. PubMed DOI PMC

Hájek M, Adamovičová M, Herynek V, Škoch A, Jírů F, Krepelová A, Dezortová M. MR relaxometry and 1H MR spectroscopy for the determination of iron and metabolite concentrations in PKAN patients. Eur Radiol. 2005;15:1060–1068. doi: 10.1007/s00330-004-2553-4. PubMed DOI

Toyokuni S. Iron-induced carcinogenesis: The role of redox regulation. Free Radic Biol Med. 1996;20:553–566. doi: 10.1016/0891-5849(95)02111-6. PubMed DOI

Evans AE, D’Angio GJ, Propert K, Anderson J, Hann HW. Prognostic factor in neuroblastoma. Cancer. 1987;59:1853–1859. doi: 10.1002/1097-0142(19870601)59:11<1853::AID-CNCR2820591102>3.0.CO;2-F. PubMed DOI

Potaznik D, Groshen S, Miller D, Bagin R, Bhalla R, Schwartz M, de Sousa M. Association of serum iron, serum transferrin saturation and serum ferritin with survival in acute lymphocytic-leukemia. Am J Pediat Hematol Oncol. 1987;9:350–355. doi: 10.1097/00043426-198724000-00014. PubMed DOI

Richmond HG. Induction of sarcoma in the rat by iron-dextran complex. Br Med J. 1959;1:947–949. doi: 10.1136/bmj.1.5127.947. PubMed DOI PMC

Huang X. Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res. 2003;533:153–171. doi: 10.1016/j.mrfmmm.2003.08.023. PubMed DOI

Sato Y, Honda Y, Asoh T, Oizumi K, Ohshima Y, Honda E. Cerebrospinal fluid ferritin in glioblastoma: evidence for tumor synthesis. J Neurooncol. 1998;40:47–50. doi: 10.1023/A:1006078521790. PubMed DOI

Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta. 2009;1790:702–717. doi: 10.1016/j.bbagen.2008.04.003. PubMed DOI

Vymazal J, Urgosík D, Bulte JW. Differentiation between hemosiderin- and ferritin-bound brain iron using nuclear magnetic resonance and magnetic resonance imaging. Cell Mol Biol (Noisy-le-grand) 2000;46:835–842. PubMed

Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A. Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology. 1993;35:119–124. doi: 10.1007/BF00593967. PubMed DOI

Herynek V, Wagnerová D, Hejlová I, Dezortová M, Hájek M. Changes in the brain during long-term follow-up after liver transplantation. J Magn Reson Imaging. 2012;35:1332–1337. doi: 10.1002/jmri.23599. PubMed DOI

Dusek P, Jankovic J, Le W. Iron dysregulation in movement disorders. Neurobiol Dis. 2012;46:1–18. doi: 10.1016/j.nbd.2011.12.054. PubMed DOI

Steegmann-Olmedillas JL. The role of iron in tumour cell proliferation. Clin Transl Oncol. 2011;13:71–76. doi: 10.1007/s12094-011-0621-1. PubMed DOI

Deugnier Y. Iron and liver cancer. Alcohol. 2003;30:145–150. doi: 10.1016/S0741-8329(03)00129-0. PubMed DOI

Jian J, Yang Q, Dai J, Eckard J, Axelrod D, Smith J, Huang X. Effects of iron deficiency and iron overload on angiogenesis and oxidative stress - a potential dual role for iron in breast cancer. Free Radic Biol Med. 2011;50:841–847. doi: 10.1016/j.freeradbiomed.2010.12.028. PubMed DOI PMC

Richardson DR. Iron chelators as therapeutic agents for the treatment of cancer. Crit Rev Oncol Hematol. 2002;42:267–281. doi: 10.1016/S1040-8428(01)00218-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...