Alterations in the basal ganglia in patients with brain tumours may be due to excessive iron deposition
Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
25435931
PubMed Central
PMC4246608
DOI
10.3892/ol.2014.2638
PII: ol-09-01-0043
Knihovny.cz E-zdroje
- Klíčová slova
- basal ganglia, brain tumours, iron, magnetic resonance imaging, oxidative stress,
- Publikační typ
- časopisecké články MeSH
The accumulation of iron in the brain is a common physiological process. However, alterations in the deposition of iron or other paramagnetic substances are associated with various diseases. In the present study, the deposition of paramagnetic substances in patients with brain tumours was evaluated using T2 relaxometry. A total of 23 patients with untreated tumours or with recurrent tumours following treatment, together with a group of 19 age-matched healthy controls, were examined using T2 relaxometry at 3T. The relaxation times in the basal ganglia, thalamus and white matter were evaluated. Significantly lower T2 relaxation times were identified in the basal ganglia and thalamus of the patients with tumours, as compared with those of the controls (P<0.05). No statistically significant difference was identified between patients with untreated or recurrent brain tumours. The reduction in T2 relaxation times in the brain tumour patients was possibly caused by the accumulation of iron, since iron homeostasis is known to be altered in patients with tumours. We propose that increased iron deposition is a consequence of a higher risk of oxidative stress caused by an increased iron concentration in the plasma or cerebrospinal fluid.
Zobrazit více v PubMed
Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958;3:41–51. doi: 10.1111/j.1471-4159.1958.tb12607.x. PubMed DOI
Vymazal J, Babis M, Brooks RA, Filip K, Dezortova M, Hrncarkova H, Hajek M. T1 and T2 alterations in the brains of patients with hepatic cirrhosis. AJNR Am J Neuroradiol. 1996;17:333–336. PubMed PMC
Wolozin B, Golts N. Iron and Parkinson’s disease. Neuroscientist. 2002;8:22–32. doi: 10.1177/107385840200800107. PubMed DOI
Correia S, Hubbard E, Hassenstab J, et al. Basal ganglia MR relaxometry in obsessive-compulsive disorder: T2 depends upon age of symptom onset. Brain Imaging Behav. 2010;4:35–45. doi: 10.1007/s11682-009-9083-2. PubMed DOI PMC
Hájek M, Adamovičová M, Herynek V, Škoch A, Jírů F, Krepelová A, Dezortová M. MR relaxometry and 1H MR spectroscopy for the determination of iron and metabolite concentrations in PKAN patients. Eur Radiol. 2005;15:1060–1068. doi: 10.1007/s00330-004-2553-4. PubMed DOI
Toyokuni S. Iron-induced carcinogenesis: The role of redox regulation. Free Radic Biol Med. 1996;20:553–566. doi: 10.1016/0891-5849(95)02111-6. PubMed DOI
Evans AE, D’Angio GJ, Propert K, Anderson J, Hann HW. Prognostic factor in neuroblastoma. Cancer. 1987;59:1853–1859. doi: 10.1002/1097-0142(19870601)59:11<1853::AID-CNCR2820591102>3.0.CO;2-F. PubMed DOI
Potaznik D, Groshen S, Miller D, Bagin R, Bhalla R, Schwartz M, de Sousa M. Association of serum iron, serum transferrin saturation and serum ferritin with survival in acute lymphocytic-leukemia. Am J Pediat Hematol Oncol. 1987;9:350–355. doi: 10.1097/00043426-198724000-00014. PubMed DOI
Richmond HG. Induction of sarcoma in the rat by iron-dextran complex. Br Med J. 1959;1:947–949. doi: 10.1136/bmj.1.5127.947. PubMed DOI PMC
Huang X. Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res. 2003;533:153–171. doi: 10.1016/j.mrfmmm.2003.08.023. PubMed DOI
Sato Y, Honda Y, Asoh T, Oizumi K, Ohshima Y, Honda E. Cerebrospinal fluid ferritin in glioblastoma: evidence for tumor synthesis. J Neurooncol. 1998;40:47–50. doi: 10.1023/A:1006078521790. PubMed DOI
Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta. 2009;1790:702–717. doi: 10.1016/j.bbagen.2008.04.003. PubMed DOI
Vymazal J, Urgosík D, Bulte JW. Differentiation between hemosiderin- and ferritin-bound brain iron using nuclear magnetic resonance and magnetic resonance imaging. Cell Mol Biol (Noisy-le-grand) 2000;46:835–842. PubMed
Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A. Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology. 1993;35:119–124. doi: 10.1007/BF00593967. PubMed DOI
Herynek V, Wagnerová D, Hejlová I, Dezortová M, Hájek M. Changes in the brain during long-term follow-up after liver transplantation. J Magn Reson Imaging. 2012;35:1332–1337. doi: 10.1002/jmri.23599. PubMed DOI
Dusek P, Jankovic J, Le W. Iron dysregulation in movement disorders. Neurobiol Dis. 2012;46:1–18. doi: 10.1016/j.nbd.2011.12.054. PubMed DOI
Steegmann-Olmedillas JL. The role of iron in tumour cell proliferation. Clin Transl Oncol. 2011;13:71–76. doi: 10.1007/s12094-011-0621-1. PubMed DOI
Deugnier Y. Iron and liver cancer. Alcohol. 2003;30:145–150. doi: 10.1016/S0741-8329(03)00129-0. PubMed DOI
Jian J, Yang Q, Dai J, Eckard J, Axelrod D, Smith J, Huang X. Effects of iron deficiency and iron overload on angiogenesis and oxidative stress - a potential dual role for iron in breast cancer. Free Radic Biol Med. 2011;50:841–847. doi: 10.1016/j.freeradbiomed.2010.12.028. PubMed DOI PMC
Richardson DR. Iron chelators as therapeutic agents for the treatment of cancer. Crit Rev Oncol Hematol. 2002;42:267–281. doi: 10.1016/S1040-8428(01)00218-9. PubMed DOI