MR relaxometry and 1H MR spectroscopy for the determination of iron and metabolite concentrations in PKAN patients
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
- MeSH
- Hallervordenův-Spatzův syndrom genetika metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie * MeSH
- magnetická rezonanční tomografie * MeSH
- mladiství MeSH
- mutace MeSH
- neparametrická statistika MeSH
- železo metabolismus MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- železo MeSH
The influence of iron deposits on T2 values and the content of metabolites in the brain of three patients with DNA proved pantothenate kinase-associated neurodegeneration (PKAN, formerly Hallervorden-Spatz syndrome) was studied. An eye-of-the-tiger sign, a typical MR finding for PKAN, was observed in two patients with the same mutation. A hypointensive lesion in a whole globus pallidus was observed in the third patient with the additional mutation. T2 values in the globus pallidus of the patients were about 40% shorter than in controls (71/48 ms in controls vs. patients), which corresponds to the increase of Fe concentration based on the ferritin basis from 17 mg for controls to 48 mg (100 g wet brain weight) in PKAN patients. 1H MR spectroscopy (MRS) has mainly been used to describe neuronal damage represented by decreased NAA (6.4 mmol vs. 9 mmol) and Cr/PCr (7.0 mmol vs. 9.8 mmol) concentrations in the basal ganglia region of the patient group to controls; MRS is much more case-sensitive and describes individual development of the disease as demonstrated in the difference between the spectra of typical PKAN patients (1, 2), and the patient (3) with atypical PKAN development. Any significant changes of metabolite concentration with the exception glutamine, glutamate and GABA were found in the white matter.
Zobrazit více v PubMed
Arch Biochem Biophys. 2002 Jan 15;397(2):345-53 PubMed
Hum Mol Genet. 2001 Oct 1;10(20):2181-6 PubMed
Magn Reson Med. 1992 Oct;27(2):368-74 PubMed
Eur Radiol. 2004 Jun;14(6):1000-4 PubMed
Nat Genet. 2001 Aug;28(4):299-300 PubMed
J Magn Reson Imaging. 1993 Jul-Aug;3(4):641-8 PubMed
J Neurosci. 2002 Jul 15;22(14):5848-55 PubMed
Ann Neurol. 1985 Oct;18(4):482-9 PubMed
J Magn Reson Imaging. 1995 Sep-Oct;5(5):554-60 PubMed
Acta Radiol. 2001 Sep;42(5):459-66 PubMed
Clin Neuropathol. 1998 Jan-Feb;17(1):35-40 PubMed
J Comput Assist Tomogr. 1985 May-Jun;9(3):491-3 PubMed
J Neurol Sci. 1995 Dec;134 Suppl:19-26 PubMed
Arch Fr Pediatr. 1993 Jan;50(1):35-7 PubMed
MAGMA. 2003 Nov;16(3):135-43 PubMed
J Neurol Sci. 2003 Mar 15;207(1-2):106-7 PubMed
Neuroradiology. 1993;35(2):119-24 PubMed
J Magn Reson Imaging. 1995 Jul-Aug;5(4):446-50 PubMed
Digitale Bilddiagn. 1984 Jun;4(2):66-8 PubMed
Arch Neurol. 1974 Jan;30(1):70-83 PubMed
Nat Genet. 2001 Aug;28(4):345-9 PubMed
J Magn Reson Imaging. 1993 Jul-Aug;3(4):637-40 PubMed
AJNR Am J Neuroradiol. 2003 Sep;24(8):1690-3 PubMed
Arch Neurol. 1977 Dec;34(12):729-38 PubMed
MAGMA. 2001 Mar;12(1):10-5 PubMed
J Neurochem. 1958 Oct;3(1):41-51 PubMed
Magn Reson Med. 1993 Dec;30(6):672-9 PubMed
MAGMA. 2000 Feb;10(1):6-17 PubMed
N Engl J Med. 2003 Jan 2;348(1):33-40 PubMed
FEBS Lett. 2001 May 4;496(1):1-5 PubMed