Anti-adherence potential of Enterococcus durans cells and its cell-free supernatant on plastic and stainless steel against foodborne pathogens
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
- MeSH
- bakteriální adheze účinky léků MeSH
- bakteriální proteiny metabolismus MeSH
- biofilmy účinky léků MeSH
- biologické přípravky metabolismus MeSH
- Enterococcus metabolismus fyziologie MeSH
- gramnegativní bakterie účinky léků fyziologie MeSH
- grampozitivní bakterie účinky léků fyziologie MeSH
- mikrobiologie životního prostředí * MeSH
- nerezavějící ocel MeSH
- plastické hmoty MeSH
- potravinářská mikrobiologie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- biologické přípravky MeSH
- nerezavějící ocel MeSH
- plastické hmoty MeSH
It is demonstrated that numerous bacteria are able to attach to surfaces of equipment used for food handling or processing. In this study, a strain of Enterococcus durans, originally isolated from a milking machine surface, was firstly studied for its biofilm formation potential on plastic and stainless steel supports. The strain was found to be a biofilm producer either at 25, 30 or 37 °C on polystyrene microtitre plates, with a best adherence level observed at 25 °C. En. durans showed a strong adhesion to stainless steel AISI-304. Antibacterial and anti-adherence activities of En. durans were tested against four foodborne pathogens (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853 and Listeria innocua CLIP 74915) which were shown as biofilm producers on both plastic and stainless steel. En. durans cells and cell-free culture supernatant showed a significant (P < 0.05) inhibition potential of the pathogens either on solid media or in broth co-cultures. Characterization of the antibacterial substances indicated their proteinaceous nature which assigned them most probably to bacteriocins group.
Zobrazit více v PubMed
J Appl Bacteriol. 1993 Dec;75(6):499-511 PubMed
J Appl Microbiol. 2001 Jun;90(6):1000-5 PubMed
Int J Food Microbiol. 2003 Dec 1;88(2-3):215-22 PubMed
Methods Enzymol. 1999;310:91-109 PubMed
J Appl Microbiol. 2002;92(4):695-705 PubMed
Int J Food Microbiol. 2004 Feb 15;91(1):1-11 PubMed
Int J Food Microbiol. 1999 Oct 15;51(2-3):169-82 PubMed
Int J Food Microbiol. 2008 Sep 1;126(3):291-301 PubMed
Int J Food Microbiol. 1998 Jun 30;42(1-2):9-27 PubMed
Appl Environ Microbiol. 1995 Mar;61(3):992-7 PubMed
J Microbiol Methods. 2000 Apr;40(2):175-9 PubMed
Nat Rev Microbiol. 2004 Feb;2(2):95-108 PubMed
Lett Appl Microbiol. 2005;40(6):430-5 PubMed
J Food Prot. 1996 Dec;59(13):54-63 PubMed
J Appl Microbiol. 2000 Apr;88(4):594-605 PubMed
J Biosci Bioeng. 2006 Jan;101(1):1-8 PubMed
Annu Rev Microbiol. 1995;49:711-45 PubMed
Appl Environ Microbiol. 2002 Feb;68(2):728-37 PubMed
J Appl Microbiol. 1999 Apr;86(4):576-82 PubMed