• This record comes from PubMed

DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling

. 2015 Jan 08 ; 96 (1) : 81-92. [epub] 20141231

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
DK1068306 NIDDK NIH HHS - United States
P30 DK090728 NIDDK NIH HHS - United States
P30 DK079310 NIDDK NIH HHS - United States
K99 DK099434 NIDDK NIH HHS - United States
MOP130507 Canadian Institutes of Health Research - Canada
DK099434 NIDDK NIH HHS - United States
R00 DK091405 NIDDK NIH HHS - United States
R01 DK068306 NIDDK NIH HHS - United States
Howard Hughes Medical Institute - United States
R00 DK099434 NIDDK NIH HHS - United States
DK090728 NIDDK NIH HHS - United States
DK059597 NIDDK NIH HHS - United States
DK064614 NIDDK NIH HHS - United States
R01 DK064614 NIDDK NIH HHS - United States
DK1069274 NIDDK NIH HHS - United States
R01 DK059597 NIDDK NIH HHS - United States

Links

PubMed 25557784
PubMed Central PMC4289677
DOI 10.1016/j.ajhg.2014.12.002
PII: S0002-9297(14)00508-4
Knihovny.cz E-resources

Nephronophthisis-related ciliopathies (NPHP-RC) are recessive diseases characterized by renal dysplasia or degeneration. We here identify mutations of DCDC2 as causing a renal-hepatic ciliopathy. DCDC2 localizes to the ciliary axoneme and to mitotic spindle fibers in a cell-cycle-dependent manner. Knockdown of Dcdc2 in IMCD3 cells disrupts ciliogenesis, which is rescued by wild-type (WT) human DCDC2, but not by constructs that reflect human mutations. We show that DCDC2 interacts with DVL and DCDC2 overexpression inhibits β-catenin-dependent Wnt signaling in an effect additive to Wnt inhibitors. Mutations detected in human NPHP-RC lack these effects. A Wnt inhibitor likewise restores ciliogenesis in 3D IMCD3 cultures, emphasizing the importance of Wnt signaling for renal tubulogenesis. Knockdown of dcdc2 in zebrafish recapitulates NPHP-RC phenotypes, including renal cysts and hydrocephalus, which is rescued by a Wnt inhibitor and by WT, but not by mutant, DCDC2. We thus demonstrate a central role of Wnt signaling in the pathogenesis of NPHP-RC, suggesting an avenue for potential treatment of NPHP-RC.

Department of Biosciences and Nutrition Karolinska Institutet 14183 Huddinge Sweden

Department of Biosciences and Nutrition Karolinska Institutet 14183 Huddinge Sweden; Molecular Neurology Research Program University of Helsinki and Folkhälsan Institute of Genetics 00014 Helsinki Finland; Science for Life Laboratory Karolinska Institutet 171 21 Solna Sweden

Department of Gastroenterology and Hepatology Radboud UMC P O Box 9101 6500 HB Nijmegen the Netherlands

Department of Genetics Yale University School of Medicine New Haven CT 06510 USA; Howard Hughes Medical Institute Chevy Chase MD 20815 USA

Department of Histopathology Great Ormond Street Hospital London WC1N3JH UK

Department of Medicine Boston Children's Hospital Harvard Medical School Boston MA 02115 USA

Department of Medicine Boston Children's Hospital Harvard Medical School Boston MA 02115 USA; Howard Hughes Medical Institute Chevy Chase MD 20815 USA

Department of Nephrology and Hypertension University Medical Center Utrecht 3584CX Utrecht the Netherlands

Department of Pediatrics and Adolescent Medicine 1st Faculty of Medicine Charles University and General University Hospital Ke Karlovu 2 Prague 2 128 08 Czech Republic

Department of Pediatrics and Communicable Diseases University of Michigan Ann Arbor MI 48109 USA

Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269 USA

Division of Nephrology and Hypertension Mayo Clinic Rochester MN 55905 USA

Inserm U574 and Department of Genetics Paris 5 University Necker Hospital 75015 Paris France

Institute of Human Genetics University Hospital RWTH Aachen 52074 Aachen Germany

Lunenfeld Tanenbaum Research Institute Mount Sinai Hospital 600 University Avenue Toronto Ontario M5G 1X5 Canada; Department of Molecular Genetics University of Toronto Toronto Ontario M5S 1A8 Canada

Medical Genetics Branch National Human Genome Research Institute National Institutes of Health Bethesda MD 20892 USA

University College London Institute of Child Health and Pediatric Nephrology Great Ormond Street Hospital London WC1N3JH UK

See more in PubMed

Sang L., Miller J.J., Corbit K.C., Giles R.H., Brauer M.J., Otto E.A., Baye L.M., Wen X., Scales S.J., Kwong M. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell. 2011;145:513–528. PubMed PMC

Hildebrandt F., Benzing T., Katsanis N. Ciliopathies. N. Engl. J. Med. 2011;364:1533–1543. PubMed PMC

Hildebrandt F., Otto E., Rensing C., Nothwang H.G., Vollmer M., Adolphs J., Hanusch H., Brandis M. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat. Genet. 1997;17:149–153. PubMed

Otto E.A., Schermer B., Obara T., O’Toole J.F., Hiller K.S., Mueller A.M., Ruf R.G., Hoefele J., Beekmann F., Landau D. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat. Genet. 2003;34:413–420. PubMed PMC

Attanasio M., Uhlenhaut N.H., Sousa V.H., O’Toole J.F., Otto E., Anlag K., Klugmann C., Treier A.C., Helou J., Sayer J.A. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat. Genet. 2007;39:1018–1024. PubMed

Chaki M., Airik R., Ghosh A.K., Giles R.H., Chen R., Slaats G.G., Wang H., Hurd T.W., Zhou W., Cluckey A. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150:533–548. PubMed PMC

Zhou W., Otto E.A., Cluckey A., Airik R., Hurd T.W., Chaki M., Diaz K., Lach F.P., Bennett G.R., Gee H.Y. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat. Genet. 2012;44:910–915. PubMed PMC

Olbrich H., Fliegauf M., Hoefele J., Kispert A., Otto E., Volz A., Wolf M.T., Sasmaz G., Trauer U., Reinhardt R. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat. Genet. 2003;34:455–459. PubMed

Otto E., Hoefele J., Ruf R., Mueller A.M., Hiller K.S., Wolf M.T., Schuermann M.J., Becker A., Birkenhäger R., Sudbrak R. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am. J. Hum. Genet. 2002;71:1161–1167. PubMed PMC

Mollet G., Salomon R., Gribouval O., Silbermann F., Bacq D., Landthaler G., Milford D., Nayir A., Rizzoni G., Antignac C., Saunier S. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat. Genet. 2002;32:300–305. PubMed

Otto E., Loeys B., Khanna H., Hellemans J., Sudbrak R., Fan S., Muerb U., O’Toole J.F., Helou J., Attanasio M. A novel ciliary IQ domain protein, NPHP5, is mutated in Senior-Loken syndrome (nephronophthisis with retinitis pigmentosa), and interacts with RPGR and calmodulin. Nat. Genet. 2005;37:282–288. PubMed

Sayer J.A., Otto E.A., O’Toole J.F., Nurnberg G., Kennedy M.A., Becker C., Hennies H.C., Helou J., Attanasio M., Fausett B.V. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 2006;38:674–681. PubMed

Valente E.M., Silhavy J.L., Brancati F., Barrano G., Krishnaswami S.R., Castori M., Lancaster M.A., Boltshauser E., Boccone L., Al-Gazali L., International Joubert Syndrome Related Disorders Study Group Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 2006;38:623–625. PubMed

Delous M., Baala L., Salomon R., Laclef C., Vierkotten J., Tory K., Golzio C., Lacoste T., Besse L., Ozilou C. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 2007;39:875–881. PubMed

Otto E.A., Trapp M.L., Schultheiss U.T., Helou J., Quarmby L.M., Hildebrandt F. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J. Am. Soc. Nephrol. 2008;19:587–592. PubMed PMC

Halbritter J., Diaz K., Chaki M., Porath J.D., Tarrier B., Fu C., Innis J.L., Allen S.J., Lyons R.H., Stefanidis C.J. High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing. J. Med. Genet. 2012;49:756–767. PubMed

Halbritter J., Porath J.D., Diaz K.A., Braun D.A., Kohl S., Chaki M., Allen S.J., Soliman N.A., Hildebrandt F., Otto E.A., GPN Study Group Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum. Genet. 2013;132:865–884. PubMed PMC

Kruglyak L., Daly M.J., Reeve-Daly M.P., Lander E.S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 1996;58:1347–1363. PubMed PMC

Strauch K., Fimmers R., Kurz T., Deichmann K.A., Wienker T.F., Baur M.P. Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. Am. J. Hum. Genet. 2000;66:1945–1957. PubMed PMC

Gudbjartsson D.F., Jonasson K., Frigge M.L., Kong A. Allegro, a new computer program for multipoint linkage analysis. Nat. Genet. 2000;25:12–13. PubMed

Hildebrandt F., Heeringa S.F., Rüschendorf F., Attanasio M., Nürnberg G., Becker C., Seelow D., Huebner N., Chernin G., Vlangos C.N. A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet. 2009;5:e1000353. PubMed PMC

Boyden L.M., Choi M., Choate K.A., Nelson-Williams C.J., Farhi A., Toka H.R., Tikhonova I.R., Bjornson R., Mane S.M., Colussi G. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482:98–102. PubMed PMC

Zariwala M.A., Gee H.Y., Kurkowiak M., Al-Mutairi D.A., Leigh M.W., Hurd T.W., Hjeij R., Dell S.D., Chaki M., Dougherty G.W. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am. J. Hum. Genet. 2013;93:336–345. PubMed PMC

Otto E.A., Hurd T.W., Airik R., Chaki M., Zhou W., Stoetzel C., Patil S.B., Levy S., Ghosh A.K., Murga-Zamalloa C.A. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat. Genet. 2010;42:840–850. PubMed PMC

Odenthal J., Nüsslein-Volhard C. fork head domain genes in zebrafish. Dev. Genes Evol. 1998;208:245–258. PubMed

Thisse B., Heyer V., Lux A., Alunni V., Degrave A., Seiliez I., Kirchner J., Parkhill J.P., Thisse C. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol. 2004;77:505–519. PubMed

Chandrasekar G., Vesterlund L., Hultenby K., Tapia-Páez I., Kere J. The zebrafish orthologue of the dyslexia candidate gene DYX1C1 is essential for cilia growth and function. PLoS ONE. 2013;8:e63123. PubMed PMC

Zhou W., Hildebrandt F. Molecular cloning and expression of phospholipase C epsilon 1 in zebrafish. Gene Expr. Patterns. 2009;9:282–288. PubMed

Truong D.T., Che A., Rendall A.R., Szalkowski C.E., LoTurco J.J., Galaburda A.M., Holly Fitch R. Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability. Genes Brain Behav. 2014;13:802–811. PubMed PMC

Shmueli A., Gdalyahu A., Sapoznik S., Sapir T., Tsukada M., Reiner O. Site-specific dephosphorylation of doublecortin (DCX) by protein phosphatase 1 (PP1) Mol. Cell. Neurosci. 2006;32:15–26. PubMed

Massinen S., Hokkanen M.E., Matsson H., Tammimies K., Tapia-Páez I., Dahlström-Heuser V., Kuja-Panula J., Burghoorn J., Jeppsson K.E., Swoboda P. Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons. PLoS ONE. 2011;6:e20580. PubMed PMC

Watnick T., Germino G. From cilia to cyst. Nat. Genet. 2003;34:355–356. PubMed

Giles R.H., van Es J.H., Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta. 2003;1653:1–24. PubMed

Coquelle F.M., Levy T., Bergmann S., Wolf S.G., Bar-El D., Sapir T., Brody Y., Orr I., Barkai N., Eichele G., Reiner O. Common and divergent roles for members of the mouse DCX superfamily. Cell Cycle. 2006;5:976–983. PubMed

Yasuda J., Whitmarsh A.J., Cavanagh J., Sharma M., Davis R.J. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell. Biol. 1999;19:7245–7254. PubMed PMC

Jaeschke A., Czech M.P., Davis R.J. An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev. 2004;18:1976–1980. PubMed PMC

Caspi M., Atlas R., Kantor A., Sapir T., Reiner O. Interaction between LIS1 and doublecortin, two lissencephaly gene products. Hum. Mol. Genet. 2000;9:2205–2213. PubMed

Renkema K.Y., Stokman M.F., Giles R.H., Knoers N.V. Next-generation sequencing for research and diagnostics in kidney disease. Nat. Rev. Nephrol. 2014;10:433–444. PubMed

Hurlstone A.F., Haramis A.P., Wienholds E., Begthel H., Korving J., Van Eeden F., Cuppen E., Zivkovic D., Plasterk R.H., Clevers H. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature. 2003;425:633–637. PubMed

Miller R.K., McCrea P.D. Wnt to build a tube: contributions of Wnt signaling to epithelial tubulogenesis. Developmental dynamics: an official publication of the American Association of Anatomists. 2010;239:77–93. PubMed PMC

Ge W.S., Wang Y.J., Wu J.X., Fan J.G., Chen Y.W., Zhu L. Beta-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/beta-catenin signaling inhibits hepatic stellate cell activation. Molecular medicine reports. 2014;9:2145–2151. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...