Phenolic content and antioxidant capacity in algal food products
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25587787
PubMed Central
PMC6272319
DOI
10.3390/molecules20011118
PII: molecules20011118
Knihovny.cz E-resources
- MeSH
- Food Analysis * MeSH
- Antioxidants pharmacology MeSH
- Phenols analysis MeSH
- Seaweed chemistry MeSH
- Solubility MeSH
- Water MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antioxidants MeSH
- Phenols MeSH
- Water MeSH
The study objective was to investigate total phenolic content using Folin-Ciocalteu's method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW) by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida) and red (Porphyra tenera, Palmaria palmata) seaweed, green freshwater algae (Chlorella pyrenoidosa), and cyanobacteria (Spirulina platensis). HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g-1 GAE; 7.53 µmol AA·g-1, respectively). A linear relationship existed between ACW and phenolic contents (r = 0.99). Some algal products seem to be promising functional foods rich in polyphenols.
See more in PubMed
Mišurcová L. Chemical composition of seaweeds. In: Kim S.-K., editor. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology. John Wiley & Sons; Chichester, UK: 2011. pp. 173–192.
Ambrozova J.V., Misurcova L., Vicha R., Machu L., Samek D., Baron M., Mlcek J., Sochor J., Jurikova T. Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green microalga Chlorella kessleri and the cyanobacterium Spirulina platensis. Molecules. 2014;19:2344–2360. doi: 10.3390/molecules19022344. PubMed DOI PMC
Rop O., Mlcek J., Jurikova T., Neugebauerova J., Vabkova J. Edible flowers—A new promising source of mineral elements in human nutrition. Molecules. 2012;17:6672–6683. doi: 10.3390/molecules17066672. PubMed DOI PMC
Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. PubMed
Zern T.L., Fernandez M.L. Cardioprotective effects of dietary polyphenols. J. Nutr. 2005;135:2291–2294. PubMed
Li Y.X., Wijesekara I., Li Y., Kim S.K. Phlorotannins as bioactive agents from brown algae. Process Biochem. 2011;46:2219–2224. doi: 10.1016/j.procbio.2011.09.015. DOI
Thomas N.V., Kim S.K. Potential pharmacological applications of polyphenolic derivates from marine brown algae. Environ. Toxicol. Pharmacol. 2011;32:325–335. doi: 10.1016/j.etap.2011.09.004. PubMed DOI
Popov I., Lewin G. Antioxidative homeostasis: Characterization by means of chemiluminescent technique. Methods Enzymol. 1999;300:437–456. PubMed
Craft B.D., Kerrihard A.L., Amarowicz R., Pegg R.B. Phenol-based antioxiadants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. Food Saf. 2012;11:148–173. doi: 10.1111/j.1541-4337.2011.00173.x. DOI
Yuan Y.V., Walsh N.A. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 2006;44:1144–1150. doi: 10.1016/j.fct.2006.02.002. PubMed DOI
Jiménez-Escrig A., Jiménez-Jiménez I., Pulido R., Saura-Calixto F. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 2001;81:530–534. doi: 10.1002/jsfa.842. DOI
Marinho-Soriano E., Fonseca P.C., Carneiro M.A.A., Moreira W.S.C. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 2006;97:2402–2406. doi: 10.1016/j.biortech.2005.10.014. PubMed DOI
López A., Rico M., Rivero A., Suárez de Tangil M. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem. 2011;125:1104–1109. doi: 10.1016/j.foodchem.2010.09.101. DOI
Li S., Li S.K., Gan R.Y., Song F.L., Kuang L., Li H.B. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crops Prod. 2013;51:289–298. doi: 10.1016/j.indcrop.2013.09.017. DOI
Fu L., Xu B.T., Xu X.R., Gan R.Y., Zhang Y., Xia E.Q., Li H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011;129:345–350. doi: 10.1016/j.foodchem.2011.04.079. PubMed DOI
Deng G.F., Lin X., Xu X.R., Gao L.L., Xie J.F., Li H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods. 2013;5:260–266. doi: 10.1016/j.jff.2012.10.015. DOI
Dudonné S., Vitrac X., Coutière P., Woillez M., Mérillon J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009;57:1768–1774. doi: 10.1021/jf803011r. PubMed DOI
Lee K.W., Kim Y.J., Lee H.J., Lee C.Y. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agric. Food Chem. 2003;51:7292–7295. doi: 10.1021/jf0344385. PubMed DOI
Kim S.M., Kang K., Jeon J.S., Jho E.H., Kim C.Y., Nho C.W., Um B.H. Isolation of phlorotannins from Eisenia bicyclis and their hepatoprotective effects against oxidative stress induced by tert-butyl hyperoxide. Appl. Biochem. Biotechnol. 2011;165:1296–1307. doi: 10.1007/s12010-011-9347-3. PubMed DOI
Heo S.J., Cha S.H., Lee K.W., Cho S.K., Jeon Y.J. Antioxidant activities of chlorophyta and phaeophyta from Jeju Island. Algae. 2005;20:251–260. doi: 10.4490/ALGAE.2005.20.3.251. DOI
Zhang W.W., Duan X.J., Huang H.L., Zhang Y., Wang B.G. Evaluation of 28 marine algae from the Qingdao coast for antioxidative capacity and determination of antioxidant efficiency and total phenolic content of fractions and subfractions derived from Symphyocladia latiuscula (Rhodomelaceae) J. Appl. Phycol. 2007;19:97–108. doi: 10.1007/s10811-006-9115-x. DOI
Yuan Y.V., Bone D.E., Carrington M.F. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem. 2005;91:485–494. doi: 10.1016/j.foodchem.2004.04.039. DOI
Heo S.J., Cha S.H., Lee K.W., Jeon Y.J. Antioxidant activities of red algae from Jeju Island. Algae. 2006;21:149–156. doi: 10.4490/ALGAE.2006.21.1.149. DOI
Li H.B., Cheng K.W., Wong C.C., Fan K.W., Chen F., Jiang Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007;102:771–776. doi: 10.1016/j.foodchem.2006.06.022. DOI
Liu J.G., Hou C.W., Lee S.Y., Chuang Y., Lin C.C. Antioxidant effects and UVB protective activity of Spirulina (Arthrospira platensis) products fermented with lactic acid bacteria. Process Biochem. 2011;46:1405–1410. doi: 10.1016/j.procbio.2011.03.010. DOI
Tomás-Barberán F.A., Clifford M.N. Flavonones, chalcones and dihydrochalcones—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000;80:1073–1080. doi: 10.1002/(SICI)1097-0010(20000515)80:7<1073::AID-JSFA568>3.0.CO;2-B. DOI
Yoshie Y., Wang W., Petillo D., Suzuki T. Distribution of catechins in Japanese seaweeds. Fish. Sci. 2000;66:998–1000. doi: 10.1046/j.1444-2906.2000.00160.x. DOI
Rodríguez-Bernaldo de Quirós A., Lage-Yusty M.A., López-Hernández J. Determination of phenolic compounds in macroalgae for human consumption. Food Chem. 2010;121:634–638.
Onofrejová L., Vašíčková J., Klejdus B., Stratil P., Mišurcová L., Kráčmar S., Kopecký J., Vacek J. Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J. Pharm. Biomed. Anal. 2010;51:464–470. doi: 10.1016/j.jpba.2009.03.027. PubMed DOI
Kranl K., Schlesier K., Bitsch R., Hermann H., Rohe M., Böhm V. Comparing antioxidative food additives and secondary plant products—Use of different assays. Food Chem. 2005;93:171–175. doi: 10.1016/j.foodchem.2004.11.012. DOI
Besco E., Braccioli E., Vertuani S., Ziosi P., Brazzo F., Bruni R., Sacchetti G., Manfredini S. The use of photochemiluminescence for the measurement of the integral antioxidant capacity of baobab products. Food Chem. 2007;102:1352–1356. doi: 10.1016/j.foodchem.2006.05.067. DOI
Chua M.T., Tung Y.T., Chang S.T. Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresour. Technol. 2008;99:1918–1925. doi: 10.1016/j.biortech.2007.03.020. PubMed DOI
Punithavathi V.R., Stanely Mainzen Prince P., Kumar M.R., Selvakumari C.J. Protective effects of gallic acid on hepatic lipid peroxide metabolism, glycoprotein components and lipids in streptozotocin-induced type II diabetic Wistar rats. J. Biochem. Mol. Toxicol. 2011;25:68–76. doi: 10.1002/jbt.20360. PubMed DOI
Peungvicha P., Temsiririrkkul R., Prasain J.K., Tezuka Y., Kadota S., Thirawarapan S.S., Watanabe H. 4-Hydroxybeozoic acid: A hypoglycemic constituent of aqueous extract of Pandanus odorus root. J. Ethnopharmacol. 1998;62:79–84. doi: 10.1016/S0378-8741(98)00061-0. PubMed DOI
Al-Hazzani A.A., Alshatwi A.A. Catechin hydrate inhibits proliferation and mediates apoptosis of SiHa human cervical cancer cells. Food Chem. Toxicol. 2011;49:3281–3286. doi: 10.1016/j.fct.2011.09.023. PubMed DOI
Babich H., Zuckerbraun H.L., Weinerman S.M. In vitro cytotoxicity of (–)-catechin gallate, a minor polyphenol in green tea. Toxicol. Lett. 2007;171:171–180. doi: 10.1016/j.toxlet.2007.05.125. PubMed DOI
Terao J., Piskula M., Yao Q. Protective Effect of Epicatechin, Epicatechin Gallate, and Quercetin on Lipid Peroxidation in Phospholipid Bilayers. Arch. Biochem. Biophys. 1994;308:278–284. doi: 10.1006/abbi.1994.1039. PubMed DOI
Suganuma M., Okabe S., Oniyama M., Tada Y., Ito H., Fujiki H. Wide distribution of [3H](–)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis. 1998;19:1771–1776. doi: 10.1093/carcin/19.10.1771. PubMed DOI
Singh B.N., Shankar S., Srivastava R. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanism, perspectives and clinical applications. Biochem. Pharmacol. 2011;82:1807–1821. doi: 10.1016/j.bcp.2011.07.093. PubMed DOI PMC
Rodríguez-Bernaldo de Quirós A., Frecha-Ferreiro S., Vidal-Pérez A.M., López-Hernández J. Antioxidant compounds in edible brown seaweeds. Eur. Food Res. Technol. 2010;231:495–498. doi: 10.1007/s00217-010-1295-6. DOI