Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis

. 2014 Feb 21 ; 19 (2) : 2344-60. [epub] 20140221

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24566307

Total lipid contents of green (Chlorella pyrenoidosa, C), red (Porphyra tenera, N; Palmaria palmata, D), and brown (Laminaria japonica, K; Eisenia bicyclis, A; Undaria pinnatifida, W, WI; Hizikia fusiformis, H) commercial edible algal and cyanobacterial (Spirulina platensis, S) products, and autotrophically cultivated samples of the green microalga Chlorella kessleri (CK) and the cyanobacterium Spirulina platensis (SP) were determined using a solvent mixture of methanol/chloroform/water (1:2:1, v/v/v, solvent I) and n-hexane (solvent II). Total lipid contents ranged from 0.64% (II) to 18.02% (I) by dry weight and the highest total lipid content was observed in the autotrophically cultivated cyanobacterium Spirulina platensis. Solvent mixture I was found to be more effective than solvent II. Fatty acids were determined by gas chromatography of their methyl esters (% of total FAMEs). Generally, the predominant fatty acids (all results for extractions with solvent mixture I) were saturated palmitic acid (C16:0; 24.64%-65.49%), monounsaturated oleic acid (C18:1(n-9); 2.79%-26.45%), polyunsaturated linoleic acid (C18:2(n-6); 0.71%-36.38%), α-linolenic acid (C18:3(n-3); 0.00%-21.29%), γ-linolenic acid (C18:3(n-6); 1.94%-17.36%), and arachidonic acid (C20:4(n-6); 0.00%-15.37%). The highest content of ω-3 fatty acids (21.29%) was determined in Chlorella pyrenoidosa using solvent I, while conversely, the highest content of ω-6 fatty acids (41.42%) was observed in Chlorella kessleri using the same solvent.

Zobrazit více v PubMed

Cardoso K.H.M., Guaratini T., Barros M.P., Falcão V.R., Tonon A.P., Lopes N.P., Campos S., Torres M.A., Souza A.O., Colepicolo P., et al. Metabolites from algae with economical impact. Comp. Biochem. Physiol. C. 2007;146:60–78. doi: 10.1016/j.cbpb.2006.09.003. PubMed DOI

Holdt S.L., Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011;23:543–597. doi: 10.1007/s10811-010-9632-5. DOI

Mišurcová L. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology. John Wiley & Sons; Chichester, UK: 2011. Chemical Composition of Seaweeds; pp. 173–192.

Mišurcová L., Ambrožová L., Samek D. Seaweed lipids as nutraceuticals. Adv. Food Nutr. Res. 2011;64:339–355. doi: 10.1016/B978-0-12-387669-0.00027-2. PubMed DOI

Mišurcová L., Machů L., Orsavová J. Seaweed minerals as nutraceuticals. Adv. Food Nutr. Res. 2011;64:371–390. doi: 10.1016/B978-0-12-387669-0.00029-6. PubMed DOI

Mišurcová L., Škrovánková S., Samek D., Ambrožová J., Machů L. Health benefits of algal polysaccharides in human nutrition. HAdv. Food Nutr. Res. 2012;66:75–146. doi: 10.1016/B978-0-12-394597-6.00003-3. PubMed DOI

Juríková T., Balla S., Sochor J., Pohanka M., Mlcek J., Baron M. Flavonoid profile of saskatoon berries (Amelanchier alnifolia Nutt.) and their health promoting effects. Molecules. 2013;18:12571–12586. doi: 10.3390/molecules181012571. PubMed DOI PMC

Rop O., Balík J., Řezníček V., Juríková T., Škardová P., Salaš P., Sochor J., Mlček J., Kramářová D. Chemical characteristics of fruits of some selected quince (Cydonia oblonga Mill.) cultivars. Czech. J. Food Sci. 2011;29:65–73.

Van T.T.T., Hieu V.M.N., Vi T.N.H., Ly B.M., Thuy T.T.T. Antioxidant activities and total phenolic content of macroalgae from central coast of Vietnam. Asian J. Chem. 2013;25:6639–6642.

Gamal A.A.E. Biological importance of marine algae. Saudi Pharm. J. 2010;18:1–25. PubMed PMC

Gupta S., Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011;22:315–326. doi: 10.1016/j.tifs.2011.03.011. DOI

Kucekova Z., Mlcek J., Humpolicek P., Rop O. Edible flowers—Antioxidant activity and impact on cell viability. Cent. Eur. J. Biol. 2013;8:1023–1031. doi: 10.2478/s11535-013-0212-y. DOI

Mlcek J., Rop O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011;22:561–569. doi: 10.1016/j.tifs.2011.04.006. DOI

Grofová Z. Fatty acids. Med. Praxi. 2010;7:388–390. (In Czech)

Dawczynski C., Schubert R., Jahreis G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007;103:891–899. doi: 10.1016/j.foodchem.2006.09.041. DOI

Polat S., Ozogul Y. Seasonal proximate and fatty acid variations of some seaweeds from the northeastern Mediterranean coast. Oceanologia. 2013;55:375–391. doi: 10.5697/oc.55-2.375. DOI

Badzhanov A.S., Abdusamatova N., Yusupova F.M., Faizullaeva N., Mezhlumyan L.G., Malikova M.K. Chemical composition of Spirulina platensis cultivated in Uzbekistan. Chem. Nat. Compd. 2004;40:276–279. doi: 10.1023/B:CONC.0000039141.98247.e8. DOI

D’Oca M.G.M., Viegas C.V., Lemoes J.S., Miyasaki E.K., Morón-Villarreyes J.A., Primel E.G., Abreu P.C. Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenergy. 2011;35:1533–1538. doi: 10.1016/j.biombioe.2010.12.047. DOI

Ortega-Calvo J.J., Mazuelos C., Hermosin B., Saiz-Jimenez C. Chemical composition of Spirulina and eukaryotic algae food products marked in Spain. J. Appl. Phycol. 1993;5:425–435. doi: 10.1007/BF02182735. DOI

Sánchez-Machado D.I., Lopéz-Cervantes J., Lopéz-Hernandéz J., Paseiro-Losada P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004;85:439–444. doi: 10.1016/j.foodchem.2003.08.001. DOI

Burtin P. Nutritional value of seaweeds. Electron. J. Environ. Agric. Food Chem. 2003;2:498–503.

Habib M.A.B., Parvin M., Huntington T.C., Hasan M.R. A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish. FAO Fisheries and Aquaculture Circular; Rome, Italy: 2008. pp. 1–33.

Simopoulos A.P. The importance of the Omega-6/Omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008;233:674–688. doi: 10.3181/0711-MR-311. PubMed DOI

Žák A., Tvrzická E., Zeman M., Vecka M. Pathophysiology of and clinical significance of polyunsaturated fatty acids n-3 family. Čas. Lék. Česk. 2005;144:6–18. (In Czech) PubMed

McHugh D.J. A Guide to the Seaweed Industry. Food and Agriculture Organization of the United Nations; Rome, Italy: 2003.

Sanina N.M., Goncharova S.N., Kostetsky E.Y. Seasonal changes of fatty acid composition and thermotropic behavior of polar lipids from marine macrophytes. Phytochemistry. 2008;69:1517–1527. doi: 10.1016/j.phytochem.2008.01.014. PubMed DOI

Colla L.M., Bertolin T.E., Costa J.A.V. Fatty acids profile of Spirulina platensis grown under different temperatures and nitrogen concentrations. Z. Naturforsch. C. 2004;59:55–59. PubMed

Mishra V.K., Temelli F., Ooraikul B., Shacklock P.F., Craigie J.S. Lipids of the red alga, palmaria palmata. Bot. Mar. 1993;36:169–174.

Khotimchenko S.V., Kulikova I.V. Lipids of different parts of the lamina of Laminaria japonica Aresch. Bot. Mar. 2000;43:87–91.

Erickson M.C. Lipid extraction from channel catfish muscle: Comparison of solvent systems. J. Food Sci. 1993;58:84–89. doi: 10.1111/j.1365-2621.1993.tb03217.x. DOI

Hernández-Carmona G., Carrillo-Domínguez S., Arvizu-Higuera D.L., Rodríguez-Montesinos Y.E., Murillo-Álvarez J.I., Muñoz-Ochoa M., Castillo-Domínguez R.M. Monthly variation in the chemical composition of Eisenia arborea J.E. Areschoug. J. Appl. Phycol. 2009;21:607–616. doi: 10.1007/s10811-009-9454-5. DOI

Nelson M.M., Phleger C.F., Nichols P.D. Seasonal lipid composition in macroalgae of the northeastern Pacific Ocean. Bot. Mar. 2002;45:58–65.

Gressler V., Yokoya N.S., Fujii M.T., Colepico P., Filho J.H., Torres R.P., Pinto E. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem. 2010;120:585–590. doi: 10.1016/j.foodchem.2009.10.028. DOI

Petkov G., Garcia G. Which are fatty acids of the green alga Chlorella? Biochem. Syst. Ecol. 2007;35:281–285. doi: 10.1016/j.bse.2006.10.017. DOI

Fleurence J., Gutbier G., Mabeau S., Leray C. Fatty acids from 11 marine macroalgae of the French Brittany coast. J. Appl. Phycol. 1994;6:527–532. doi: 10.1007/BF02182406. DOI

Khotimchenko S.V. Fatty acids of brown algae from the Russian Far East. Phytochemistry. 1998;49:2363–2369. doi: 10.1016/S0031-9422(98)00240-4. DOI

Li X., Fan X., Han L., Lou Q. Fatty acids of some algae from Bohai Sea. Phytochemistry. 2002;59:157–161. doi: 10.1016/S0031-9422(01)00437-X. PubMed DOI

Tvrzická E., Staňková B., Vecka M., Žák A. Fatty acids 1. Occurrence and biological significance. Čas. Lék Čes. 2009;148:16–24. (In Czech) PubMed

Flachs P., Horakova O., Brauner P., Rossmeisl M., Pecina P., Franssen-van Hal N., Ruzickova J., Sponarova J., Drahota Z., Vlcek C., et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat. Diabetologia. 2005;48:2365–2375. doi: 10.1007/s00125-005-1944-7. PubMed DOI

Kinsella J.E., Lokesh B., Stone R.A. Dietary n-3 polyunsaturated fatty acids and amelioration of cardiovascular disease: Possible mechanisms. Am. J. Clin. Nutr. 1990;52:1–28. PubMed

Weiss L.A., Barrett-Connor E., von Mühlen D. Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: The Rancho Bernardo Study. Am. J. Clin. Nutr. 2005;81:934–938. PubMed

Hu F.B., Manson J.A.E., Willett W.C. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr. 2001;20:5–19. doi: 10.1080/07315724.2001.10719008. PubMed DOI

Masojídek J., Sergejevová M., Rottnerová K., Jirka V., Korečko J., Kopecký J., Zaťková I., Torzillo G., Štys D. A two-stage solar photobioreactor for cultivation of microalgae based on solar concentrators. J. Appl. Phycol. 2009;21:55–63. doi: 10.1007/s10811-008-9324-6. DOI

Stanier R.Y., Kunisawa R., Mandel M., Cohen-Baziere G. Purification and properties of unicellular blue-green algae (order Chroococcales) Bacteriol. Rev. 1971;35:171–205. PubMed PMC

Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace