Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26057750
PubMed Central
PMC4490476
DOI
10.3390/ijms160612871
PII: ijms160612871
Knihovny.cz E-zdroje
- Klíčová slova
- Spearman’s correlation, cardiovascular diseases, coronary heart diseases, fatty acids, vegetable oils,
- MeSH
- energetický příjem * MeSH
- kardiovaskulární nemoci epidemiologie mortalita prevence a kontrola MeSH
- lidé MeSH
- mastné kyseliny aplikace a dávkování analýza MeSH
- oleje rostlin aplikace a dávkování chemie MeSH
- výživová politika * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mastné kyseliny MeSH
- oleje rostlin MeSH
Characterizations of fatty acids composition in % of total methylester of fatty acids (FAMEs) of fourteen vegetable oils--safflower, grape, silybum marianum, hemp, sunflower, wheat germ, pumpkin seed, sesame, rice bran, almond, rapeseed, peanut, olive, and coconut oil--were obtained by using gas chromatography (GC). Saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA), palmitic acid (C16:0; 4.6%-20.0%), oleic acid (C18:1; 6.2%-71.1%) and linoleic acid (C18:2; 1.6%-79%), respectively, were found predominant. The nutritional aspect of analyzed oils was evaluated by determination of the energy contribution of SFAs (19.4%-695.7% E(RDI)), PUFAs (10.6%-786.8% E(RDI)), n-3 FAs (4.4%-117.1% E(RDI)) and n-6 FAs (1.8%-959.2% E(RDI)), expressed in % E(RDI) of 1 g oil to energy recommended dietary intakes (E(RDI)) for total fat (E(RDI)--37.7 kJ/g). The significant relationship between the reported data of total fat, SFAs, MUFAs and PUFAs intakes (% E(RDI)) for adults and mortality caused by coronary heart diseases (CHD) and cardiovascular diseases (CVD) in twelve countries has not been confirmed by Spearman's correlations.
Zobrazit více v PubMed
Mišurcová L., Vávra Ambrožová J., Samek D. Seaweed lipids as nutraceuticals. Adv. Food Nutr. Res. 2011;64:339–355. PubMed
Brenna J.T. Efficiency of conversion of α-linolenic acid to long chain n-3 fatty acids in man. Curr. Opin. Clin. Nutr. 2002;5:127–132. doi: 10.1097/00075197-200203000-00002. PubMed DOI
Burdge G.C., Calder P.C. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005;45:581–597. doi: 10.1051/rnd:2005047. PubMed DOI
Burdge G.C., Wootton S.A. Conversion of eicoapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 2002;88:411–420. doi: 10.1079/BJN2002689. PubMed DOI
Brenna J.T., Salem J.N., Sinclair A.J., Cunnane S.C. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fat. Acids. 2009;80:85–91. doi: 10.1016/j.plefa.2009.01.004. PubMed DOI
Huang Ch., Freter C. Lipid metabolism, apoptosis and cancer therapy. Int. J. Mol. Sci. 2015;16:924–949. doi: 10.3390/ijms16010924. PubMed DOI PMC
Gatek J., Vrana D., Melichar B., Vazan P., Kotocova K., Kotoc J., Dudesek B., Hnatek L., Duben J. Significance of the resection margin and risk factors for close or positive resection margin in patients undergoing breast-conserving surgery. J. BUON. 2012;17:452–456. PubMed
Simmons G.E., Pruitt W.M., Pruitt K. Diverse roles of SIRT1 in cancer biology and lipid metabolism. Int. J. Mol. Sci. 2015;16:950–965. doi: 10.3390/ijms16010950. PubMed DOI PMC
Gatek J., Vrana D., Hnatek L., Bakala J., Dudesek B., Duben J., Musil T. Sentinel node biopsy and neoadjuvant chemotherapy in the treatment of breast cancer. J. BUON. 2012;17:265–270. PubMed
Proust F., Lucas M., Deawailly É. Fatty acid profiles among the Inuit of Nunavi: Current status and temporal change. Prostaglandins Leukot. Essent. Fat. Acids. 2014;90:159–167. doi: 10.1016/j.plefa.2014.02.001. PubMed DOI
Bozza P.T., Viola J.P.B. Lipid droplets in inflammation and cancer. Prostaglandins Leukot. Essent. Fat. Acids. 2014;90:159–167. doi: 10.1016/j.plefa.2010.02.005. PubMed DOI
Gard M.L., Thomson A.B.R., Clandinin M.T. Effect of dietary cholesterol and/or ω3 fatty acids on lipid composition and ∆5-desaturase activity of rat liver microsomes. J. Nutr. 1988;118:661–668. PubMed
Brenner R.R., Bernasconi A.M., González M.S., Rimoldi O.J. Dietary cholesterol modulates ∆6 and ∆9 desaturase mRNAs and enzymatic activity in rats fed a low-EFA diet. Lipids. 2002;37:375–383. doi: 10.1007/s1145-002-0905-3. PubMed DOI
Landau J.M., Sekowski A., Hamm M.W. Dietary cholesterol and the activity of stearoyl CoA desaturase in rats: Evidence for an indirect regulatory effect. Biochim. Biophys. Acta. 1997;3:349–357. doi: 10.1016/S0005-2760(97)00010-6. PubMed DOI
FAO/WHO . Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation. FAO/WHO; Geneva, Switzerland: 2010. PubMed
Tvrzická E., Staňková B., Vecka M., Žák A. Fatty acids 1. Occurrence and biological significance. Cas. Lek. Cesk. 2009;148:16–24. (In Czech) PubMed
Flachs P., Horakova O., Brauner P., Rossmeisl M., Pecina P., Franssen-van Hal N., Ruzickova J., Sponarova J., Drahota Z., Vlcek C., et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat. Diabetologia. 2005;48:2365–2375. doi: 10.1007/s00125-005-1944-7. PubMed DOI
Kinsella J.E., Lokesh B., Stone R.A. Dietary n-3 polyunsaturated fatty acids and amelioration of cardiovascular disease: Possible mechanisms. Am. J. Clin. Nutr. 1990;52:1–28. PubMed
Weiss L.A., Barrett-Connor E., von Mühlen D. Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: The Rancho Bernardo Study. Am. J. Clin. Nutr. 2005;81:934–938. PubMed
Hu F.B., Manson J.A.E., Willett W.C. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr. 2001;20:5–19. doi: 10.1080/07315724.2001.10719008. PubMed DOI
Mobraten K., Haug T.M., Kleiveland C.R., Lea T. Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signaling events, but with different kinetics and intensity in Caco-2 cells. Lipids Health Dis. 2013;12:101–107. doi: 10.1186/1476-511X-12-101. PubMed DOI PMC
Salem J., Vandal M.N., Calon F. The benefit of docosahexaenoic acid for the adult brain in aging and dementia. Prostaglandins Leukot. Essent. Fat. Acids. 2015;92:15–22. doi: 10.1016/j.plefa.2014.10.003. PubMed DOI
Ramsden C., Mann J.D., Faurot K.R., Lynch C., Imam S.T., MacIntosh B.A., Hibbeln J.R., Loewke J., Smith S., Coble R., et al. Low omega-6 vs. low omega-6 plus high omega-3 dietary intervention for Chronic Daily headache: Protocol for a randomized clinical trial. Trials. 2011;12:1–11. doi: 10.1186/1745-6215-12-97. PubMed DOI PMC
Puri B.K., Martins J.G. Which polyunsaturated fatty acids are active in children with attention-deficit hyperactivity disorder receiving PUFA supplementation? A fatty acid validated meta-regression analysis of randomized controlled trials. Prostaglandins Leukot. Essent. Fat. Acids. 2014;90:179–189. doi: 10.1016/j.plefa.2014.01.004. PubMed DOI
Simopoulos A.P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002;21:495–505. doi: 10.1080/07315724.2002.10719248. PubMed DOI
Kris-Etherton P.M., Harris W.S., Appel L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–2757. doi: 10.1161/01.CIR.0000038493.65177.94. PubMed DOI
Kris-Etherton P.M., Grieger J.A., Etherton T.D. Dietary reference intakes for DHA and EPA. Prostaglandins Leukot. Essent. Fat. Acids. 2009;81:99–104. doi: 10.1016/j.plefa.2009.05.011. PubMed DOI
Maehre H.K., Malde M.K., Eilertsen K.E., Elvevoll E.O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 2014;94:3281–3290. doi: 10.1002/jsfa.6681. PubMed DOI
Hertting G., Seregi A. Formation and function of eicosanoids in the central nervous system. Ann. N. Y. Acad. Sci. 1989;559:84–89. doi: 10.1111/j.1749-6632.1989.tb22600.x. PubMed DOI
Pokorný J., Dubská L. Technology of Lipids. Publisher of Technical Literature; Praque, Czech Republic: 1986. pp. 1–452. (In Czech)
Zambiazi R.C., Przybylski R., Zambiazi M.W., Mendonca C.B. Fatty acid composition of vegetable oils and fats. B. CEPPA Curitiba. 2007;25:111–120.
Kostik V., Memeti S., Bauer B. Fatty acid composition of edible oils and fats. J. Hyg. Eng. Des. 2013;4:112–116.
Rajah K.K. Fats in Food Technology. Sheffield Academic Press; Sheffield, UK: 2002. pp. 1–379.
Alfawaz M.A. Chemical composition and oil characteristics of pumpkin (Cucurbita maxima) seed kernels. Food Sci. Agric. Res. Center. 2004;129:5–18.
Fathi-Achachlouei B., Azadmard-Damirchi S. Milk thistle seed oil constituents from different varieties grown in Iran. J. Am. Oil Chem. Soc. 2009;86:643–649. doi: 10.1007/s11746-009-1399-y. DOI
El-Mallah M.H., El-Shami S.M., Hassanein M.M. Detailed studies on some lipids of Silybum marianum(L.) seed oil. Grasas Aceites. 2003;54:397–402.
Kamal-Eldin A., Anderson R. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J. Am. Oil Chem. Soc. 1997;74:375–380. doi: 10.1007/s11746-997-0093-1. DOI
Denke M.A., Grundy S.M. Comparison of effects of lauric acid and palmitic acid on plasma lipids and lipoproteins. Am. J. Clin. Nutr. 1992;56:895–898. PubMed
Zock P.L., de Vries J.H.M., Katan M.B. Impact of myristic acid versus palmitic acid on serum lipid and lipoprotein levels in healthy women and men. Arterioscler. Thromb. Vasc. 1994;14:567–575. doi: 10.1161/01.ATV.14.4.567. PubMed DOI
Mensink R.P., Zock P.L., Kester A.D.M., Katan M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials1−3. Am. J. Clin. Nutr. 2003;77:1146–1155. PubMed
Lawrence G.D. Dietary fats and health: Dietary recommendations in the context of scientific evidence. Adv. Nutr. 2013;4:294–302. doi: 10.3945/an.113.003657. PubMed DOI PMC
Pala V., Krogh V., Muti P., Chajés V., Riboli E., Micheli A., Saadatian M., Sieri S., Berrino F. Erythrocyte membrane fatty acids and subsaquent breast cancer: A prospective Italian study. J. Natl. Cancer Inst. 2001;93:1088–1095. doi: 10.1093/jnci/93.14.1088. PubMed DOI
Kim H., Youn K., Yun E.Y., Hwang J.S., Jeong W.S., Ho Ch.T., Jun M. Oleic acid ameliorates Aβ-induced inflammation by downregulation of COX-2 and iNOS via NFκB signaling pathway. J. Funct. Foods. 2015;14:1–11. doi: 10.1016/j.jff.2015.01.027. DOI
Yongmanitchai W., Ward O.P. Positional distribution of fatty acids, and molecular species of polar lipids, in the diatom Phaeodactylum tricornutum. J. Gen. Microbiol. 1993;139:465–472. doi: 10.1099/00221287-139-3-465. PubMed DOI
Vávra Ambrožová J., Mišurcová L., Vícha R., Machů L., Samek D., Baroň M., Mlček J., Sochor J., Juříková T. Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products and green microalga Chlorella kessleri and cyanobacteria Spirulina platensis. Molecules. 2014;19:2344–2360. doi: 10.3390/molecules19022344. PubMed DOI PMC
Mišurcová L. Chemical composition of seaweeds. In: Kim S.K., editor. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology. John Wiley & Sons Ltd.; Chichester, UK: 2011. pp. 173–192.
De Caterina R., Basta G. n-3 Fatty acids and the inflammatory response—Biological background. Eur. Heart J. Suppl. 2001;3:D42–D49. doi: 10.1016/S1520-765X(01)90118-X. DOI
AI F.F., Bin J., Zhang Z.M., Huang J.H., Wang J.B., Liang Y.Z., Yu L., Yang Z.Y. Application of random forests to select quality vegetable oils by their fatty acid composition. Food Chem. 2014;143:473–478. doi: 10.1016/j.foodchem.2013.08.013. PubMed DOI
Abedi E., Sahari M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014;2:443–463. doi: 10.1002/fsn3.121. PubMed DOI PMC
De Caterina R., Liao J.K., Libby P. Fatty acid modulation of endothelial activation. Am. J. Clin. Nutr. 2000;71:213S–223S. PubMed
Narayan B., Miyashita K., Hosakawa M. Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—A review. Food Rev. Int. 2006;22:291–307. doi: 10.1080/87559120600694622. DOI
Sugano M., Hirahara F. Polyunsaturated fatty acids in the food chain in Japan. Am. J. Clin. Nutr. 2000;71:189S–196S. PubMed
Cordain L., Eaton S.B., Miller J.B., Mann N., Hill K. The paradoxical nature of hunter-gatherer diets: Meat-based, yet non-atherogenic. Eur. J. Clin. Nutr. 2002;56:542–552. doi: 10.1038/sj.ejcn.1601353. PubMed DOI
Sundram K., Ismail A., Hayes K.C., Jeyamalar R., Pathmanathan R. Trans (elaidic) fatty acids adversely affect the lipoprotein profile relative to specific saturated fatty acids in humans1,2. J. Nutr. 1997;127:514S–520S. PubMed
Elmadfa I., Kornsteiner M. Dietary fat intake—A global perspective. Ann. Nutr. Metab. 2009;54:8–14. doi: 10.1159/000220822. PubMed DOI
Allender S., Scarborough P., Peto V., Rayner M., Leal J., Luengo-Fernandez R., Gray A. European Cardiovascular Disease Statistics. European Heart Network; Brussels, Belgium: 2008.
Hay D.R. Technical Report: To Medical and Allied Professions. Heart Foundation; Auckland, New Zealand: 2004. Cardiovascular disease in New Zealand, 2004: A summary of recent statistical information.
Norman R., Bradshaw D., Schneider M., Pieterse D., Groenewald P. What are the top causes of death in South Africa?; Proceedings of the South African Medical Research Council; Cape Town, South Africa. 2006.
Iso H. Changes in coronary heart disease risk among Japanese. Circulation. 2008;118:2725–2729. doi: 10.1161/CIRCULATIONAHA.107.750117. PubMed DOI
Roger V.L., Go A.S., Lloyd-Jones D.M., Benjamin E.J., Berry J.D., Borden W.B., Bravata D.M., Dai S., Ford E.S., Fox C.S., et al. Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation. 2011;125:1–221. PubMed PMC
Harika R.K., Eilander A., Osendarp S.J.M., Zock P.L. Intake of fatty acids in general Populations Worldwide Does Not Meet dietary recommendations to prevent Coronary Heart Disease: A systematic review of data from 40 countries. Ann. Nutr. Metab. 2013;63:229–238. doi: 10.1159/000355437. PubMed DOI
Oh K., Hu F.B., Manson J.E., Stampfer M.J., Willett W.C. Dietary fat intake and risk of coronary heart disease in women: 20 Years of follow-up of the nurses’health study. Am. J. Epidemiol. 2005;161:672–679. doi: 10.1093/aje/kwi085. PubMed DOI
Siri-Tarino P.W., Sun Q., Hu F.B., Krauss R.M. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease1−5. Am. J. Clin. Nutr. 2010;91:535–546. doi: 10.3945/ajcn.2009.27725. PubMed DOI PMC
Chowdhury R., Warnakula S., Kunutsor S., Crowe F., Ward H.A., Johnson L., Franco O.H., Butterworth A.S., Forouhi N.G., Thompson S.G., et al. Association of dietary, circulating, and supplement fatty acids with coronary risk. Ann. Intern. Med. 2014;160:398–406. doi: 10.7326/M13-1788. PubMed DOI
Czernichow S., Thomas D., Bruckert E. n-6 Fatty acids and cardiovascular health: A review of the evidence for dietary intake recommendations. Br. J. Nutr. 2010;104:788–796. doi: 10.1017/S0007114510002096. PubMed DOI
Micha R., Khatibzadeh S., Shi P., Fahimi S., Lim S., Andrews K.G., Engell R.E., Powles J., Ezzati M., Mozaffarian D. Global, regional, and national consumption levels of dietary fats and oils in 1990 ad 2010: A systematic analysis including 266 country-specific nutrition surveys. Br. Med. J. 2014;348:1–20. doi: 10.1136/bmj.g2272. PubMed DOI PMC
Jakobsen M.U., O’Reilly E.J., Heitmann B.L., Pereira M.A., Balter K., Fraser G.E., Goldbourt U., Hallmans G., Knekt P., Liu S., et al. Major types of dietary fat and risk of coronary heart diseases: A pooled analysis of 11 cohort studies1−3. Am. J. Clin. Nutr. 2009;89:1425–1432. doi: 10.3945/ajcn.2008.27124. PubMed DOI PMC
Abbasi F., Brown B.W., Lamendola C., McLaughlin T., Reaven G.M. Relationship between Obesity, Insulin Resistance, and Coronary Heart Disease Risk. J. Am. Coll. Cardiol. 2002;40:937–943. doi: 10.1016/S0735-1097(02)02051-X. PubMed DOI
Animal Feeding Stuffs—Determination of the Content of Fatty Acids—Part 1: Preparation of Methyl Esters. Czech Standards Institute; Prague, Czech Republic: 2007. pp. 1–20. ČSN CEN ISO/TS 17764–1.
Macedo L.F.A., Lacerda E.C.Q., Silva R.R., Simionato J.I., Pedrao M.R., Coro F.A.G., de Souza N.E. Implication of method chosen for analysis of fatty acids in meat: A review. Am. J. Agric. Biol. Sci. 2012;7:278–284. doi: 10.3844/ajabssp.2012.278.284. DOI
Animal Feeding Stuffs—Determination of the Content of Fatty Acids—Part 2: Gas Chromatographic Method. Czech Standards Institute; Prague, Czech Republic: 2007. pp. 1–24. ČSN CEN ISO/TS 17764–2.
Epoxidation of Methyl Esters as Valuable Biomolecules: Monitoring of Reaction
Nutritional and Antioxidant Potential of Fiddleheads from European Ferns