Enhancing Commercial Gourmet Oil Quality: The Role of Dried Cayenne Pepper Red (Capsicum annuum L.) as a Natural Additive
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 2/2024
the Grant Agency of the Faculty of Agrobiology and Food Resources (FAFR), Slovak University of Agriculture (SUA) in Nitra (Slovakia)
No. 2024VZDinst038
the Tatra Bank Foundation 2024 (Slovakia)
KEGA 016SPU-4/2024
the Cultural and Educational Grant Agency of the Ministry of Education, Science, Research and Sport of Slovakia
APVV-22-0348
the Slovak Research and Development Agency
APVV-21-0206
the Slovak Research and Development Agency
PubMed
40005237
PubMed Central
PMC11858105
DOI
10.3390/molecules30040927
PII: molecules30040927
Knihovny.cz E-zdroje
- Klíčová slova
- Cayenne pepper red, antimicrobial activity, antioxidant activity, fatty acids, health benefits, technological profile, vegetable oils,
- MeSH
- antiinfekční látky farmakologie chemie MeSH
- antioxidancia * farmakologie chemie MeSH
- Capsicum * chemie MeSH
- kapsaicin analogy a deriváty farmakologie analýza MeSH
- mastné kyseliny analýza MeSH
- oleje rostlin chemie farmakologie MeSH
- olivový olej chemie MeSH
- rýžový olej chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky MeSH
- antioxidancia * MeSH
- dihydrocapsaicin MeSH Prohlížeč
- kapsaicin MeSH
- mastné kyseliny MeSH
- oleje rostlin MeSH
- olivový olej MeSH
- rýžový olej MeSH
This study assessed the potential of dried Cayenne pepper (CP; Capsicum annuum L.) as a natural additive to rice bran oil (RBO), grape seed oil (GSO), and virgin olive oil (OO). Key analyses included peroxide and acid values, oxidative stability (Rancimat method), the composition of fatty acids (FAs) (GC-FID method), antioxidant activity (AA; DPPH method), and antimicrobial properties (disc diffusion method). Capsaicin and the dihydrocapsaicin contents in CP were quantified (HPLC-DAD method) as 1499.37 ± 3.64 and 1449.04 ± 5.14 mg/kg DW, respectively. Oleic acid (C18:1cis n9) dominated in OO (69.70%), OO-CP (69.73%), and RBO-CP (38.97%), while linoleic acid (C18:2cis n6) prevailed in RBO (41.34%), GSO (57.93%), and GSO-CP (58.03%). The addition of CP influenced the FA profile, particularly linoleic acid in OO and RBO, and all FAs in GSO. Peroxide and acid values increased significantly in RBO and GSO upon CP addition, but induction times remained unaffected. The strongest AA (77.00 ± 0.13%) was observed in OO-CP. Cayenne pepper significantly enhanced the antioxidant profiles of all oils compared to the counterparts. However, the antimicrobial activity was weak (≤5.0 mm inhibition zones) against tested microorganisms. These findings support CP as a functional additive for enhancing the nutritional and functional properties of gourmet oils, while highlighting the need for further optimization to improve stability and bioactivity.
Zobrazit více v PubMed
Tian M., Bai Y., Tian H., Zhao X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils: A review. Molecules. 2023;28:6393. doi: 10.3390/molecules28176393. PubMed DOI PMC
Ali A., Devarajan S. Nutritional and Health Benefits of Rice Bran Oil. In: Manickavasagan A., Santhakumar C., Venkatachalapathy N., editors. Brown Rice. Springer; Cham, Switzerland: 2017. pp. 135–158.
Riantong S., Jorg J.J. Nutrition and applications of rice bran oil: A mini-overview. Sci. Technol. Cereals Oils Foods. 2021;29:47–53.
Lai O.M., Jacoby J.J., Leong W.F., Lai W.T. Chapter 2—Nutritional studies of rice bran oil. In: Cheong L.Z., Xu X., editors. Rice Bran and Rice Bran Oil. Chemistry, Processing and Utilization. 1st ed. Academic Press and AOCS Press; Urbana, IL, USA: 2019. pp. 19–54.
Punia S., Kumar M., Sandhu K.S. Rice-bran oil: An emerging source of functional oil. J. Food Process. Preserv. 2021;45:e15318. doi: 10.1111/jfpp.15318. DOI
Liu R., Liu R., Shi L., Zhang Z., Zhang T., Lu M., Chang M., Jin Q., Wang X. Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT. 2019;109:26–32. doi: 10.1016/j.lwt.2019.03.096. DOI
Lee S., Yu S., Park H.J., Jung J., Go G.-W., Kim W. Rice bran oil ameliorates inflammatory responses by enhancing mitochondrial respiration in murine macrophages. PLoS ONE. 2019;14:e0222857. doi: 10.1371/journal.pone.0222857. PubMed DOI PMC
Chen C.W., Cheng H.H. A rice bran oil diet increases LDL-receptor and HMG-CoA reductase mRNA expressions and insulin sensitivity in rats with streptozotin/nicotinamide-induced type 2 diabetes. J. Nutr. 2006;136:1472–1476. doi: 10.1093/jn/136.6.1472. PubMed DOI
Shih C.K., Ho C.J., Li S.C., Yang S.H., Hou W.C., Cheng H.H. Preventive effects of rice bran oil on 1,2-dimethylhydrazine/dextran sodium sulphate-induced colon carcinogenesis in rats. Food Chem. 2011;126:562–567. doi: 10.1016/j.foodchem.2010.11.043. DOI
Yu Y., Zhang J., Wang J., Sun B. The anti-cancer activity and potential clinical application of rice bran extracts and fermentation products. RSC Adv. 2019;9:18060–18069. doi: 10.1039/C9RA02439E. PubMed DOI PMC
Rohman A. Rice bran oil’s role in health and cooking. In: Watson R.R., Preedy V.R., editors. Wheat and Rice in Disease Prevention and Health. Benefits, Risks and Mechanisms of Whole Grains in Health Promotion. Elsevier; Amsterdam, The Netherlands: 2014. pp. 481–490.
Pal Y.P., Pratap A.P. Rice bran oil: A versatile source for edible and industrial applications. J. Oleo Sci. 2017;66:551–556. doi: 10.5650/jos.ess17061. PubMed DOI
Park H., Yu S., Kim W. Rice Bran Oil Attenuates Chronic Inflammation by Inducing M2 Macrophage Switching in High-Fat Diet-Fed Obese Mice. Foods. 2021;10:359. doi: 10.3390/foods10020359. PubMed DOI PMC
Wong S.K., Kamisah Y., Mohamed N., Muhammad N., Masbah N., Fahami N.A.M., Mohamed I.N., Shuid A.N., Saad Q.M., Abdullah A., et al. Potential role of tocotrienols on non-communicable diseases: A review of current evidence. Nutrients. 2020;12:259. doi: 10.3390/nu12010259. PubMed DOI PMC
Shinagawa F.B., de Santana F.C., Mancini-Filho J. Effect of cold pressed grape seed oil on rats’ biochemical markers and inflammatory profile. Rev. Nutr. Camp. 2015;28:65–76. doi: 10.1590/1415-52732015000100006. DOI
Kapcsándi V., Hanczné Lakatos E., Sik B., Linka L.Á., Székelyhidi R. Characterization of fatty acid, antioxidant, and polyphenol content of grape seed oil from different Vitis vinifera L. varieties. OCL—Oilseeds Fats Crops Lipids. 2021;28:30. doi: 10.1051/ocl/2021017. DOI
Duba K.S., Fiori L. Supercritical CO2 extraction of grape seed oil: Effect of process parameters on the extraction kinetics. J. Supercrit. Fluids. 2015;98:33–43. doi: 10.1016/j.supflu.2014.12.021. DOI
Karaman S., Karasu S., Tornuk F., Toker O.S., Geçgel Ü., Sagdic O., Ozcan N., Gül O. Recovery potential of cold press byproducts obtained from the edible oil industry: Physicochemical, bioactive, and antimicrobial properties. J. Agric. Food Chem. 2015;63:2305–2313. doi: 10.1021/jf504390t. PubMed DOI
Shinagawa F.B., Santana F.C., Torres L.R.O., Mancini-Filho J. Grape seed oil: A potential functional food? Food Sci. Technol. 2015;35:399–406. doi: 10.1590/1678-457X.6826. DOI
Garavaglia J., Markoski M.M., Oliveira A., Marcadenti A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights. 2016;9:59–64. doi: 10.4137/NMI.S32910. PubMed DOI PMC
Raphael W., Sordillo L.M. Dietary polyunsaturated fatty acids and inflammation: The role of phospholipid biosynthesis. Int. J. Mol. Sci. 2013;14:21167–21188. doi: 10.3390/ijms141021167. PubMed DOI PMC
Konuskan D.B., Kamiloglu O., Demirkeser Ö.K. Fatty Acid Composition, Total Phenolic Content and Antioxidant Activity of Grape Seed Oils Obtained by Cold-Pressed and Solvent Extraction. IJPER—Indian J. Pharm. Educ. Res. 2019;53:144–150. doi: 10.5530/ijper.53.1.19. DOI
Hanganu A., Todaşcă M.C., Chira N.A., Maganu M., Roşca S. The compositional characterisation of Romanian grape seed oils using spectroscopic methods. Food Chem. 2012;134:2453–2458. doi: 10.1016/j.foodchem.2012.04.048. PubMed DOI
Da Porto C., Porretto E., Decorti D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 2013;20:1076–1080. doi: 10.1016/j.ultsonch.2012.12.002. PubMed DOI
Apaydin D., Demirci A.S., Gecgel U. Effect of Gamma Irradiation on Biochemical Properties of Grape Seeds. J. Am. Oil Chem. Soc. 2017;94:57–67. doi: 10.1007/s11746-016-2917-3. DOI
Fernandes L., Casal S., Cruz R., Pereira J.A., Ramalhosa E. Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res. Int. 2013;50:161–166. doi: 10.1016/j.foodres.2012.09.039. DOI
Ferreira S.M., Santos L. A Potential Valorization Strategy of Wine Industry by-Products and Their Application in Cosmetics—Case study: Grape Pomace and Grapeseed. Molecules. 2022;27:969. doi: 10.3390/molecules27030969. PubMed DOI PMC
Orsavova J., Misurcova L., Ambrozova J.V., Vicha R., Mlcek J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015;16:12871–12890. doi: 10.3390/ijms160612871. PubMed DOI PMC
Vujasinović V.B., Bjelica M.M., Čorbo S.C., Dimić S.B., Rabrenović B.B. Characterization of the chemical and nutritive quality of coldpressed grape seed oils produced in the Republic of Serbia from different red and white grape varieties. Grasas Aceites. 2021;72:e411. doi: 10.3989/gya.0222201. DOI
Kalogeropoulos N., Kaliora A.C. Olive and Olive Oil Bioactive Constituents. Academic Press and AOCS Press; Urbana, IL, USA: 2015. Effect of Fruit Maturity on Olive Oil Phenolic Composition and Antioxidant Capacity; pp. 123–145. DOI
Wong M., Laurence E., Leandro R. Green Vegetable Oil Processing. Academic Press and AOCS Press; Urbana, IL, USA: 2014. Modern Aqueous Oil Extraction-Centrifugation Systems for Olive and Avocado Oils; pp. 19–51. DOI
Boskou D. Specialty Oils and Fats in Food and Nutrition. Woodhead Publishing; Sawston, Cambridge, UK: 2015. Olive oil: Properties and processing for use in food; pp. 3–38. DOI
Ghanbari R., Anwar F., Alkharfy K.M., Gilani A.H., Saari N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—A review. Int. J. Mol. Sci. 2012;13:3291–3340. doi: 10.3390/ijms13033291. PubMed DOI PMC
Isaakidis A., Maghariki J.E., Carvalho-Barros S., Gomes A.M., Correia M. Is There More to Olive Oil than Healthy Lipids? Nutrients. 2023;15:3625. doi: 10.3390/nu15163625. PubMed DOI PMC
Revelou P.K., Xagoraris M., Alexandropoulou A., Kanakis C.D., Papadopoulos G.K., Pappas C.S., Tarantilis P.A. Chemometric Study of Fatty Acid Composition of Virgin Olive Oil from Four Widespread Greek Cultivars. Molecules. 2021;26:4151. doi: 10.3390/molecules26144151. PubMed DOI PMC
Gullón P., Gullón B., Astray G., Carpena M., Fraga-Corral M., Prieto M.A., Simal-Gandara J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Int. 2020;137:109683. doi: 10.1016/j.foodres.2020.109683. PubMed DOI
Zellama M.S., Chahdoura H., Zairi A., Ziani B.E.C., Boujbiha M.A., Snoussi M., Ismail S., Flamini G., Mosbah H., Selmi B., et al. Chemical characterization and nutritional quality investigations of healthy extra virgin olive oil flavored with chili pepper. Environ. Sci. Pollut. Res. Int. 2022;29:16392–16403. doi: 10.1007/s11356-021-16645-w. PubMed DOI
Antoun N., Tsimidou M. Gourmet olive oils: Stability and consumer acceptability studies. Food Res. Int. 1997;30:131–136. doi: 10.1016/S0963-9969(97)00037-9. DOI
Akçar H.H., Gümüşkesen A.S. Sensory evaluation of flavored extra virgin olive oil. GIDA. 2011;36:249–253.
Singh G., Kawatra A., Sehgal S. Nutritional composition of selected green leafy vegetables, herbs and carrots. Plant Foods Hum. Nutr. 2001;56:359–364. doi: 10.1023/A:1011873119620. PubMed DOI
Rosato A., Piarulli M., Corbo F., Muraglia M., Carone A., Vitali M.E., Vitali C. In vitro synergistic action of certain combinations of gentamicin and essential oils. Curr. Med. Chem. 2010;17:3289–3295. doi: 10.2174/092986710792231996. PubMed DOI
Duranova H., Valkova V., Gabriny L. Chili peppers (Capsicum spp.): The spice not only for cuisine purposes: An update on current knowledge. Phytochem. Rev. 2022;21:1379–1413. doi: 10.1007/s11101-021-09789-7. DOI
Olatunji T.L., Afolayan A.J. Comparison of nutritional, antioxidant vitamins and capsaicin contents in Capsicum annuum and C. frutescens. Int. J. Veg. Sci. 2020;26:190–207. doi: 10.1080/19315260.2019.1629519. DOI
Carrizo García C., Barfuss M.H., Sehr E.M., Barboza G.E., Samuel R., Moscone E.A., Ehrendorfer F. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae) Ann. Bot. 2016;118:35–51. doi: 10.1093/aob/mcw079. PubMed DOI PMC
Hui Y.H., Chen F., Nollet L.M.L., Guiné R.P.F., Le Quéré J.L., Martín-Belloso O., Mínguez-Mosquera M.I., Paliyath G., Pessoa F.L.P., Sidhu J.S., et al. Handbook of Fruit and Vegetable Flavors. John Wiley and Sons Inc.; Hoboken, NJ, USA: 2010. p. 1095.
Materska M., Perucka I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.) J. Agric. Food Chem. 2005;53:1750–1756. doi: 10.1021/jf035331k. PubMed DOI
Guil-Guerrero J.L., Martínez-Guirado C., Rebolloso-Fuentes M.M., Carrique-Pérez A. Nutrient Composition and Antioxidant Activity of 10 pepper (Capsicum annuum) Varieties. Eur. Food Res. Technol. 2006;224:1–9. doi: 10.1007/s00217-006-0281-5. DOI
Srilaong V., Kaewkhum N. Physiological and Phytochemical Changes in Cayenne Pepper. Thai J. Agric. Sci. 2011;44:16–21.
Loizzo M.R., Bonesi M., Serio A., Chaves-López C., Falco T., Paparella A., Menichini F., Tundis R. Application of Nine Air-Dried Capsicum annum Cultivars as Food Preservative: Micronutrient Content, Antioxidant Activity, and Foodborne Pathogens Inhibitory Effects. Int. J. Food Prop. 2016;20:899–910. doi: 10.1080/10942912.2016.1188310. DOI
Huang W., Cheang W.S., Wang X., Lei L., Liu Y., Ma K.Y., Zheng F., Huang Y., Chen Z.Y. Capsaicinoids but not their analogue capsinoids lower plasma cholesterol and possess beneficial vascular activity. J. Agric. Food Chem. 2014;62:8415–8420. doi: 10.1021/jf502888h. PubMed DOI
Morales-Soto A., Gómez-Caravaca A.M., García-Salas P., Segura-Carretero A., Fernández-Gutiérrez A. High-performance liquid chromatography coupled to diode array and electrospray time-of-flight mass spectrometry detectors for a comprehensive characterization of phenolic and other polar compounds in three pepper (Capsicum annuum L.) samples. Food Res. Int. 2013;51:977–984. doi: 10.1016/j.foodres.2013.02.022. DOI
Imran M., Butt M.S., Suleria H.A.R. Capsicum annuum Bioactive Compounds: Health Promotion Perspectives. In: Mérillon J.M., Ramawat K., editors. Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer; Cham, Switzerland: 2018. pp. 1–22.
Barbero G.F., Ruiz A.G., Liazid A., Palma M., Vera J.C., Barroso C.G. Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.) Food Chem. 2014;153:200–206. doi: 10.1016/j.foodchem.2013.12.068. PubMed DOI
Adamczak A., Ożarowski M., Karpiński T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals. 2020;13:153. doi: 10.3390/ph13070153. PubMed DOI PMC
Lucas-González R., Yilmaz B., Mousavi Khaneghah A., Hano C., Shariati M.A., Bangar S.P., Goksen G., Dhama K., Lorenzo J.M. Cinnamon: An antimicrobial ingredient for active packaging. Food Packag. Shelf Life. 2023;35:101026. doi: 10.1016/j.fpsl.2023.101026. DOI
Jang H.J., Lee H.J., Yoon D.K., Ji D.S., Kim J.H., Lee C.H. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci. Biotechnol. 2017;27:219–225. doi: 10.1007/s10068-017-0246-4. PubMed DOI PMC
Nieto G., Ros G., Castillo J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines. 2018;5:98. doi: 10.3390/medicines5030098. PubMed DOI PMC
Bae H., Jayaprakasha G.K., Jifon J., Patil B.S. Variation of antioxidant activity and the levels of bioactive compounds in lipophilic and hydrophilic extracts from hot pepper (Capsicum spp.) cultivars. Food Chem. 2012;134:1912–1918. doi: 10.1016/j.foodchem.2012.03.108. PubMed DOI
Si W., Liang Y., Ma K.Y., Chung H.Y., Chen Z.-Y. Antioxidant Activity of Capsaicinoid in Canola Oil. J. Agric. Food Chem. 2012;60:6230–6234. doi: 10.1021/jf301744q. PubMed DOI
Plastina P., Tundis R., La Torre C., Sicari V., Giuffré A.M., Neri A., Bonesi M., Leporini M., Fazio A., Falco T., et al. The addition of Capsicum baccatum to Calabrian monovarietal extra virgin olive oils leads to flavoured olive oils with enhanced oxidative stability. Ital. J. Food Sci. 2021;33:61–72. doi: 10.15586/ijfs.v33i1.1937. DOI
Cecchi L., Balli D., Urciuoli S., Urciuolo A., Bordiga M., Travaglia F., Zanoni B., Mulinacci N. Co-milling of sound olives with fresh chili peppers improves the volatile compound, capsaicinoid and sensory profiles of flavoured olive oil with respect to the typical infusion. Food Chem. 2023;404:134696. doi: 10.1016/j.foodchem.2022.134696. PubMed DOI
Maji A.K., Banerji P. Phytochemistry and gastrointestinal benefits of the medicinal spice, Capsicum annuum L. (Chilli): A review. J. Complement. Integr. Med. 2016;13:97–122. doi: 10.1515/jcim-2015-0037. PubMed DOI
Tripodi P., Kumar S. The Capsicum Crop: An Introduction. In: Ramchiary N., Kole C., editors. The Capsicum Genome. Compendium of Plant Genomes. Springer; Cham, Switzerland: 2019. pp. 1–8.
Fox M., Newcomb K., Oliveira C., Shakiba E., Nawarathne I.N. Facile analysis of rice bran oil to compare free unsaturated fatty acid compositions of parental and hybrid rice lines. J. Am. Oil Chem. Soc. 2022;99:1103–1111. doi: 10.1002/aocs.12631. PubMed DOI PMC
Cocan I., Negrea M., Cozma A., Alexa E., Poiana M.-A., Raba D., Danciu C., Popescu I., Cadariu A.I., Obistioiu D., et al. Chili and Sweet Pepper Seed Oil Used as a Natural Antioxidant to Improve the Thermo-Oxidative Stability of Sunflower Oil. Agronomy. 2021;11:2579. doi: 10.3390/agronomy11122579. DOI
Cerecedo-Cruz L., Azuara-Nieto E., Hernández-Álvarez A.J., González-González C.R., Melgar-Lalanne G. Evaluation of the oxidative stability of Chipotle chili (Capsicum annuum L.) oleoresins in avocado oil. Grasas Aceites. 2018;69:e240. doi: 10.3989/gya.0884171. DOI
Bimpizas-Pinis M., Santagata R., Kaiser S., Liu Y., Lyu Y. Additives in the food supply chain: Environmental assessment and circular economy implications. Environ. Sustain. Indic. 2022;14:100172. doi: 10.1016/j.indic.2022.100172. DOI
Bolek S. Consumer Attitudes Toward Natural Food Additives. In: Valencia G.A., editor. Natural Additives in Foods. 1st ed. Springer; Cham, Switzerland: 2022. pp. 325–341. DOI
Elshama S.S. Synthetic and Natural food additives: Toxicological Hazards and Health Benefits. J. Toxicol. 2020;4:555643. doi: 10.19080/OAJT.2020.04.5556343. DOI
Yasin M., Li L., Donovan-Mak M., Chen Z.-H., Panchal S.K. Capsicum Waste as a Sustainable Source of Capsaicinoids for Metabolic Diseases. Foods. 2023;12:907. doi: 10.3390/foods12040907. PubMed DOI PMC
Zewdie Y., Bosland P.W. Evaluation of Genotype, Environment, and Genotype-by-Environment Interaction for Capsaicinoids in Capsicum annuum L. Euphytica. 2000;111:185–190. doi: 10.1023/A:1003837314929. DOI
Kawabata F., Inoue N., Yazawa S., Kawada T., Inoue K., Fushiki T. Effects of CH-19 sweet, a non-pungent cultivar of red pepper, in decreasing the body weight and suppressing body fat accumulation by sympathetic nerve activation in humans. Biosci. Biotechnol. Biochem. 2006;70:2824–2835. doi: 10.1271/bbb.60206. PubMed DOI
Hachiya S., Kawabata F., Ohnuki K., Inoue N., Yoneda H., Yazawa S., Fushiki T. Effects of CH-19 Sweet, a non-pungent cultivar of red pepper, on sympathetic nervous activity, body temperature, heart rate, and blood pressure in humans. Biosci. Biotechnol. Biochem. 2007;71:671–676. doi: 10.1271/bbb.60359. PubMed DOI
Al Othman Z.A., Ahmed Y.B., Habila M.A., Ghafar A.A. Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography. Molecules. 2011;16:8919–8929. doi: 10.3390/molecules16108919. PubMed DOI PMC
Popelka P., Jevinová P., Šmejkal K., Roba P. Determination of capsaicin content and pungency level of different fresh and dried chilli peppers. Folia Vet. 2017;61:11–16. doi: 10.1515/fv-2017-0012. DOI
Arora R., Gill N.S., Chauhan G., Rana A.C. An overview about versatile molecule capsaicin. A review article. Int. J. Pharm. Sci. Drug Res. 2011;3:280–286. doi: 10.25004/IJPSDR.2011.030402. DOI
Lopez-Hernandez J., Oruna-Concha M.J., Simal-Lozano J., Gonzales-Castro M.J., Vazquez-Blanco M.E. Determination of capsaicin and dihydrocapsaicin in Cayenne pepper and padrón peppers by HPLC. Dtsch. Lebensm.-Rundsch. 1996;92:393–395.
Chopan M., Littenberg B. The Association of Hot Red Chili Pepper Consumption and Mortality: A Large Population-Based Cohort Study. PLoS ONE. 2017;12:e0169876. doi: 10.1371/journal.pone.0169876. PubMed DOI PMC
Zamljen T., Slatnar A., Hudina M., Veberic R., Medic A. Characterization and Quantification of Capsaicinoids and Phenolic Compounds in Two Types of Chili Olive Oils, Using HPLC/MS. Foods. 2022;11:2256. doi: 10.3390/foods11152256. PubMed DOI PMC
Jimenez-Lopez C., Carpena M., Lourenço-Lopes C., Gallardo-Gomez M., Lorenzo J.M., Barba F.J., Prieto M.A., Simal-Gandara J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods. 2020;9:1014. doi: 10.3390/foods9081014. PubMed DOI PMC
Maszewska M., Florowska A., Dłużewska E., Wroniak M., Marciniak-Lukasiak K., Żbikowska A. Oxidative Stability of Selected Edible Oils. Molecules. 2018;23:1746. doi: 10.3390/molecules23071746. PubMed DOI PMC
Verruck S., Balthazar C.F., Rocha R.S., Silva R., Esmerino E.A., Pimentel T.C., Freitas M.Q., Silva M.C., da Gruz A.G., Prudencio E.S. Dairy foods and positive impact on the consumer’s health. Adv. Food Nutr. Res. 2019;89:95–164. doi: 10.1016/bs.afnr.2019.03.002. PubMed DOI
Carmona-Jiménez Y., Igartuburu J.M., Guillén-Sánchez D.A., García-Moreno M.V. Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain. Molecules. 2022;27:6980. doi: 10.3390/molecules27206980. PubMed DOI PMC
Matthäus B. Virgin grapeseed oil: Is it really a nutritional highlight? Eur. J. Lipid Sci. Technol. 2008;110:645–650. doi: 10.1002/ejlt.200700276. DOI
Demirtas I., Pelvan E., Ozdemir I.S., Alasalvar C., Ertas E. Lipid characteristics and phenolics of native grape seed oils grown in Turkey. Eur. J. Lipid Sci. Technol. 2013;115:641–647. doi: 10.1002/ejlt.201200159. DOI
Wen X., Zhu M., Hu R., Zhao J., Chen Z., Li J., Ni Y. Characterisation of seed oils from different grape cultivars grown in China. J. Food Sci. Technol. 2016;53:3129–3136. doi: 10.1007/s13197-016-2286-9. PubMed DOI PMC
Ivanišová E., Juricová V., Árvay J., Kačániová M., Čech M., Kobus Z., Krzywicka M., Cichocki W., Kozłowicz K. Physicochemical, Antioxidant, Antimicrobial, and Sensory Characteristics of Selected Kinds of Edible Oils. Appl. Sci. 2024;14:3630. doi: 10.3390/app14093630. DOI
Dimić I., Teslić N., Putnik P., Bursać Kovačević D., Zeković Z., Šojić B., Mrkonjić Ž., Čolović D., Montesano D., Pavlić B. Innovative and Conventional Valorizations of Grape Seeds from Winery By-Products as Sustainable Source of Lipophilic Antioxidants. Antioxidants. 2020;9:568. doi: 10.3390/antiox9070568. PubMed DOI PMC
Ferreira R., Lourenço S., Lopes A., Andrade C., Câmara J.S., Castilho P., Perestrelo R. Evaluation of Fatty Acids Profile as a Useful Tool towards Valorization of By-Products of Agri-Food Industry. Foods. 2021;10:2867. doi: 10.3390/foods10112867. PubMed DOI PMC
Nash D.T. Cardiovascular risk beyond LDL-C levels. Other lipids are performers in cholesterol story. Postgrad. Med. 2004;116:11–15. doi: 10.3810/pgm.2004.09.1584. PubMed DOI
Asadi F., Shahriari A., Chahardah-Cheric M. Effect of long-term optional ingestion of canola oil, grape seed oil, corn oil and yogurt butter on serum, muscle and liver cholesterol status in rats. Food Chem. Toxicol. 2010;48:2454–2457. doi: 10.1016/j.fct.2010.06.012. PubMed DOI
Kim D.J., Jeon G., Sung J., Oh S.-K., Hong H.C., Lee J. Effect of grape seed oil supplementation on plasma lipid profiles in rats. Food Sci. Biotechnol. 2010;19:249–252. doi: 10.1007/s10068-010-0035-9. DOI
Mercola J., D’Adamo C.R. Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. Nutrients. 2023;15:3129. doi: 10.3390/nu15143129. PubMed DOI PMC
Hernández M.L., Sicardo M.D., Belaj A., Martínez-Rivas J.M. The Oleic/Linoleic Acid Ratio in Olive (Olea europaea L.) Fruit Mesocarp Is Mainly Controlled by OeFAD2-2 and OeFAD2-5 Genes Together with the Different Specificity of Extraplastidial Acyltransferase Enzymes. Front. Plant Sci. 2021;12:653997. doi: 10.3389/fpls.2021.653997. PubMed DOI PMC
Kim E.H., Lee S.Y., Baek D.Y., Park S.Y., Lee S.G., Ryu T.H., Lee S.K., Kang H.J., Kwon O.H., Kil M., et al. A comparison of the nutrient composition and statistical profile in red pepper fruits (Capsicums annuum L.) based on genetic and environmental factors. Appl. Biol. Chem. 2019;62:48. doi: 10.1186/s13765-019-0456-y. DOI
Ananthan R., Subhash K., Longvah T. Capsaicinoids, amino acid and fatty acid profiles in different fruit components of the world hottest Naga king chilli (Capsicum chinense Jacq) Food Chem. 2016;238:51–57. doi: 10.1016/j.foodchem.2016.12.073. PubMed DOI
Islam F., Imran A., Nosheen F., Fatima M., Arshad M.U., Afzaal M., Ijaz N., Noreen R., Mehta S., Biswas S., et al. Functional roles and novel tools for improving-oxidative stability of polyunsaturated fatty acids: A comprehensive review. Food Sci. Nutr. 2023;11:2471–2482. doi: 10.1002/fsn3.3272. PubMed DOI PMC
Nadeem M., Situ C., Abdullah M. Effect of Olein Fractions of Milk Fat on Oxidative Stability of Ice Cream. Int. J. Food Prop. 2015;18:735–745. doi: 10.1080/10942912.2013.814666. DOI
Nagy K., Iacob B.-C., Bodoki E., Oprean R. Investigating the Thermal Stability of Omega Fatty Acid-Enriched Vegetable Oils. Foods. 2024;13:2961. doi: 10.3390/foods13182961. PubMed DOI PMC
Bot A. Encyclopedia of Food Chemistry. Elsevier; Amsterdam, The Netherlands: 2019. Phytosterols; pp. 225–228. DOI
Zhao Z., Huang J., Jin Q., Wang X. Influence of oryzanol and tocopherols on thermal oxidation of rice bran oil during the heating process at Chinese cooking temperatures. LWT. 2021;142:111022. doi: 10.1016/j.lwt.2021.111022. DOI
Galano A., Martínez A. Capsaicin, a Tasty Free Radical Scavenger: Mechanism of Action and Kinetics. J. Phys. Chem. B. 2012;116:1200–1208. doi: 10.1021/jp211172f. PubMed DOI
Minatel I.O., Francisqueti F.V., Corrêa C.R., Lima G.P.P. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions. Int. J. Mol. Sci. 2016;17:1107. doi: 10.3390/ijms17081107. PubMed DOI PMC
Tao J., Liu L., Ma Q., Ma K.Y., Chen Z.-Y., Ye F., Lei L., Zhao G. Effect of γ-oryzanol on oxygen consumption and fatty acids changes of canola oil. LWT. 2022;160:113275. doi: 10.1016/j.lwt.2022.113275. DOI
Liu R., Xu Y., Chang M., Tang L., Lu M., Liu R., Jin Q., Wang X. Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil. Food Chem. 2021;343:128431. doi: 10.1016/j.foodchem.2020.128431. PubMed DOI
Juliano C., Cossu M., Alamanni M.C., Piu L. Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int. J. Pharm. 2005;299:146–154. doi: 10.1016/j.ijpharm.2005.05.018. PubMed DOI
Sunil L., Srinivas P., Prasanth Kumar P.K., Gopala Krishna A.G. Oryzanol as natural antioxidant for improving sunflower oil stability. J. Food Sci. Technol. 2015;52:3291–3299. doi: 10.1007/s13197-014-1385-8. PubMed DOI PMC
Lee C.H., Lee I.H. The Effect of Capsaicin on the Thermal and Oxidative Stability of Soybean Oil. Anim. Resour. Res. 2001;22:9–17.
Yang C.Y., Mandal P.K., Han K.H., Fukushima M., Choi K., Kim C.J., Lee C.H. Capsaicin and tocopherol in red pepper seed oil enhances the thermal oxidative stability during frying. J. Food Sci. Technol. 2010;47:162–165. doi: 10.1007/s13197-010-0032-2. PubMed DOI PMC
Borges T.H., Pereira J.A., Cabrera-Vique C., Lara L., Oliveira A.F., Seiquer I. Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chem. 2017;215:454–462. doi: 10.1016/j.foodchem.2016.07.162. PubMed DOI
Šulcerová H., Gregor T., Burdychová R. Quality determination of vegetable oils used as an addition to fermented meat products with different starter cultures. Potravin. Slovak J. Food Sci. 2017;11:236–243. doi: 10.5219/745. DOI
Zanoni B. The role of oxygen and water in the extra-virgin olive oil process Bruno. In: Peri C., editor. The Extra-Virgin Olive Oil Handbook. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2014. pp. 69–74.
Deáková Ľ. Chemické Zloženie a Oxidačná Stabilita Semien a Oleja Maku Siateho (Papaver somniferum L.). Mak Siaty pre Slovensko. NPPC, VÚRV; Piešťany, Slovakia: 2016. pp. 28–29.
Decree of the Ministry of Agriculture and Rural Development of the Slovak Republic No. 424/2012 Laying Down Requirements for Edible Vegetable Fats and Edible Vegetable Oils and Their Products, Including Requirements for Their Production, Labeling and Division. Ministry of Agriculture and Rural Development of the Slovak Republic; Staré Mesto, Slovakia: 2012.
Pimpa B., Thongraung C., Sutthirak P. Effect of Solvents and Extraction Conditions on the Properties of Crude Rice Bran Oil. WJST. 2021;18:9611. doi: 10.48048/wjst.2021.9611. DOI
Pardo J.E., Fernández E., Rubio M., Alvarruiz A., Alonso G.L. Characterization of grape seed oil from different grape varieties (Vitis vinifera) Eur. J. Lipid Sci. Technol. 2009;111:188–193. doi: 10.1002/ejlt.200800052. DOI
Osanloo M., Jamali N., Nematollahi A. Improving the oxidative stability of virgin olive oil using microformulated vitamin C. Food Sci. Nutr. 2021;9:3712–3721. doi: 10.1002/fsn3.2332. PubMed DOI PMC
Yi B., Kim M.J. Extraction of γ-oryzanol from rice bran using diverse edible oils: Enhancement in oxidative stability of oils. Food Sci. Biotechnol. 2019;29:393–399. doi: 10.1007/s10068-019-00685-7. PubMed DOI PMC
Vaisali C., Belur P.D., Regupathi I. Comparison of antioxidant properties of phenolic compounds and their effectiveness in imparting oxidative stability to sardine oil during storage. LWT. 2016;69:153–160. doi: 10.1016/j.lwt.2016.01.041. DOI
European Union European Commission (EC) Regulation No. 1989/2003 Amending Regulation (EEC) No. 2568/91 on the Characteristics of Olive Oil and Olive-Pomace Oil and on the Relevant Methods of Analysis. Off. J. Eur. Communities. 2003;295:58–68.
Şahin S. Evaluation of Stability against Oxidation in Edible Fats and Oils. J. Food Sci. Nutr. Res. 2019;2:283–297. doi: 10.26502/jfsnr.2642-11000027. DOI
Porter W.L. Paradoxical Behavior of Antioxidants in Food and Biological Systems. Toxicol. Ind. Health. 1993;9:93–122. doi: 10.1177/0748233793009001-209. PubMed DOI
Chang Y., Almy E.A., Blamer G.A., Gray J.I., Frost J.W., Strasburg G.M. Antioxidant Activity of 3-Dehydroshikimic Acid in Liposomes, Emulsions, and Bulk Oil. J. Agric. Food Chem. 2003;51:2753–2757. doi: 10.1021/jf025970f. PubMed DOI
AOCS . Official Methods and Recommended Practices of the AOCS. American Oil Chemists’ Society; Urbana, IL, USA: 2004.
Velasco J., Dobarganes C. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2002;104:661–676. doi: 10.1002/1438-9312(200210)104:9/10<661::AID-EJLT661>3.0.CO;2-D. DOI
Gimeno E., de la Torre-Carbot K., Lamuela-Raventós R.M., Castellote A.I., Fitó M., de la Torre R., Covas M.I., López-Sabater M.C. Changes in the phenolic content of low density lipoprotein after olive oil consumption in men. A randomized crossover controlled trial. Br. J. Nutr. 2007;98:1243–1250. doi: 10.1017/S0007114507778698. PubMed DOI
Liu H.R., White P.J. Oxidative stability of soybean oils with altered fatty acid. J. Am. Oil Chem. Soc. 1992;69:528–532. doi: 10.1007/BF02636103. DOI
de Camargo A.C., Regitano-d’Arce M.A.B., de Alencar S.M., Canniatti-Brazaca S.G., de Souza Vieira T.M.F., Shahidi F. Chemical Changes and Oxidative Stability of Peanuts as Affected by the Dry-Blanching. J. Am. Oil Chem. Soc. 2016;93:1101–1109. doi: 10.1007/s11746-016-2838-1. DOI
Xia E.Q., Deng G.F., Guo Y.J., Li H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010;11:622–646. doi: 10.3390/ijms11020622. PubMed DOI PMC
Caporaso N., Paduano A., Nicoletti G., Sacchi R. Capsaicinoids, antioxidant activity, and volatile compounds in olive oil flavored with dried chili pepper (Capsicum annuum) Eur. J. Lipid Sci. Technol. 2013;115:1434–1442. doi: 10.1002/ejlt.201300158. DOI
Khah M.D., Ghanbarzadeh B., Roufegarinejad Nezhad L., Ostadrahimi A. Effects of virgin olive oil and grape seed oil on physicochemical and antimicrobial properties of pectin-gelatin blend emulsified films. Int. J. Biol. Macromol. 2021;171:262–274. doi: 10.1016/j.ijbiomac.2021.01.020. PubMed DOI
Hassimotto N.M., Genovese M.I., Lajolo F.M. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem. 2005;53:2928–2935. doi: 10.1021/jf047894h. PubMed DOI
Mokhtar M., Ginestra G., Youcefi F., Filocamo A., Bisignano C., Riazi A. Antimicrobial Activity of Selected Polyphenols and Capsaicinoids Identified in Pepper (Capsicum annuum L.) and Their Possible Mode of Interaction. Curr. Microbiol. 2017;74:1253–1260. doi: 10.1007/s00284-017-1310-2. PubMed DOI
Adaszek Ł., Gadomska D., Mazurek Ł., Łyp P., Madany J., Winiarczyk S. Properties of capsaicin and its utility in veterinary and human medicine. Res. Vet. Sci. 2019;123:14–19. doi: 10.1016/j.rvsc.2018.12.002. PubMed DOI
Ciulu-Costinescu F., Chifiriuc M.C., Popa M., Bleotu C., Neamtu J., Averis L.M.E., Bubulica M.V., Simionescu A., Aldea I.M., Belu I. Screening of Polyphenol Content and In vitro Studies of Antioxidant, Antibacterial and Cytotoxic Activities of Capsicum annuum Extracts. Rev. Chim. 2015;66:1261–1266.
Kumral A., ve Şahin I. Effects of some spice extracts on Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Yersinia enterocolitica and Enterobacter aerogenes. [(accessed on 2 July 2024)];Ann. Microbiol. 2003 53:427–436. Available online: http://hdl.handle.net/11452/31460.
Omolo M.A., Wong Z., Borh W.G., Hedblom G.A., Dev K., Baumler D.J. Comparative analysis of capsaicin in twenty nine varieties of unexplored Capsicum and its antimicrobial activity against bacterial and fungal pathogens. J. Med. Plants Res. 2018;12:544–556. doi: 10.5897/JMPR2018.6667. DOI
Golian M., Mezeyová I., Andrejiová A., Hegedűsová A., Adamec S., Štefániková J., Árvay J. Effects of selected biostimulants on qualitative and quantitative parameters of nine cultivars of the genus Capsicum spp. Open Agric. 2024;9:20220266. doi: 10.1515/opag-2022-0266. DOI
AOCS . Official Methods of Analysis Cd 8b-90. American Oil Chemists’ Society; Urbana, IL, USA: 2005.
Příbela A. Analýza Potravín. 2nd ed. STU; Bratislava, Slovakia: 1993. 394p
Kačániová M., Terentjeva M., Vukovic N., Puchalski C., Roychoudhury S., Kunová S., Klūga A., Tokár M., Kluz M., Ivanišová E. The antioxidant and antimicrobial activity of essential oils against Pseudomonas spp. isolated from fish. Saudi Pharm. J. 2017;25:1108–1116. doi: 10.1016/j.jsps.2017.07.005. PubMed DOI PMC
Juricová V., Ivanišová E., Árvay J., Godočíková L., Kačániová M. Technological, antioxidant, antimicrobial and sensory profiles of selected kinds of grape oils. J. Microbiol. Biotechnol. Food Sci. 2020;10:500–504. doi: 10.15414/jmbfs.2020.10.3.500-504. DOI