Epoxidation of Methyl Esters as Valuable Biomolecules: Monitoring of Reaction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS_2023_008
University of Pardubice
PubMed
36985791
PubMed Central
PMC10053758
DOI
10.3390/molecules28062819
PII: molecules28062819
Knihovny.cz E-zdroje
- Klíčová slova
- epoxidation, esters, gas chromatography, infrared spectroscopy, liquid chromatography, vegetable oils,
- MeSH
- epoxidové sloučeniny chemie MeSH
- estery * analýza MeSH
- mastné kyseliny chemie MeSH
- nenasycené mastné kyseliny * chemie MeSH
- oleje rostlin chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epoxidové sloučeniny MeSH
- estery * MeSH
- mastné kyseliny MeSH
- nenasycené mastné kyseliny * MeSH
- oleje rostlin MeSH
The paper is focused on the epoxidation of methyl esters prepared from oil crops with various profiles of higher fatty acids, especially unsaturated, which are mainly contained in the non-edible linseed and Camelina sativa oil (second generation). The novelty consists in the separation and identification of all products with oxirane ring formed through a reaction and in the determination of time course. Through the epoxidation, many intermediates and final products were formed, i.e., epoxides with different number and/or different position of oxirane rings in carbon chain. For the determination, three main methods (infrared spectroscopy, high-pressure liquid chromatography and gas chromatography with mass spectrometry) were applied. Only gas chromatography enables the separation of individual epoxides, which were identified on the base of the mass spectra, molecule ion and time course of products. The determination of intermediates enables: (i) control of the epoxidation process, (ii) determination of the mixture of epoxides in detail and so the calculation of selectivity of each product. Therefore, the epoxidation will be more environmentally friendly especially for advanced applications of non-edible oil crops containing high amounts of unsaturated fatty acids.
Zobrazit více v PubMed
Ben Bacha A., Alonazi M., Alharbi M.G., Horchani H., Ben Abdelmalek I. Biodiesel Production by Single and Mixed Immobilized Lipases Using Waste Cooking Oil. Molecules. 2022;27:8736. doi: 10.3390/molecules27248736. PubMed DOI PMC
Hajek M., Vavra A., Carmona H.D., Kocik J. The Catalysed Transformation of Vegetable Oils or Animal Fats to Biofuels and Bio-Lubricants: A Review. Catalysts. 2021;11:1118. doi: 10.3390/catal11091118. DOI
Tan H.W., Aziz A.R.A., Aroua M.K. Glycerol production and its applications as a raw material: A review. Renew. Sustain. Energy Rev. 2013;27:118–127. doi: 10.1016/j.rser.2013.06.035. DOI
Karak N. Vegetable Oil-Based Epoxies. Woodhead Publishing; Sawston, England: 2012.
Nogales-Delgado S., Cabanillas A.G., Romero A.G., Martin J.M.E. Monitoring tert-Butylhydroquinone Content and Its Effect on a Biolubricant during Oxidation. Molecules. 2022;27:8931. doi: 10.3390/molecules27248931. PubMed DOI PMC
Atzori L., Comes A., Fusaro L., Aprile C., Cutrufello M.G. Aluminosilicate-Supported Catalysts for the Synthesis of Cyclic Carbonates by Reaction of CO2 with the Corresponding Epoxides. Molecules. 2022;27:8883. doi: 10.3390/molecules27248883. PubMed DOI PMC
Manka D., Siewniak A. Deep Eutectic Solvents as Catalysts for Cyclic Carbonates Synthesis from CO2 and Epoxides. Molecules. 2022;27:9006. doi: 10.3390/molecules27249006. PubMed DOI PMC
Dunn R.O. Thermal analysis of alternative diesel fuels from vegetable oils. J. Am. Oil Chem. Soc. 1999;76:109–115. doi: 10.1007/s11746-999-0056-9. DOI
Orsavova J., Misurcova L., Ambrozova J., Vicha R., Mlcek J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015;16:12871–12890. doi: 10.3390/ijms160612871. PubMed DOI PMC
Fukuda H., Kondo A., Noda H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 2001;92:405–416. doi: 10.1016/S1389-1723(01)80288-7. PubMed DOI
Bhuiya M.M.K., Rasul M.G., Khan M.M.K., Ashwath N. Biodiesel production and characterisation of poppy (Papaver somniferum L.) seed oil methyl ester as a source of 2nd generation biodiesel feedstock. Ind. Crops Prod. 2020;152:112493. doi: 10.1016/j.indcrop.2020.112493. DOI
Wahl H.G., Habel S.Y., Schmieder N., Liebich H.M. Identification of Cis-Trans-Isomers of Methyl-Ester and Oxazoline Derivatives of Unsaturated Fatty-Acids Using Gc-Ftir-Ms. J. High Resolut. Chromatogr. 1994;17:543–548. doi: 10.1002/jhrc.1240170707. DOI
Santacesaria E., Turco R., Russo V., Tesser R., Di Serio M. Soybean Oil Epoxidation: Kinetics of the Epoxide Ring Opening Reactions. Processes. 2020;8:1134. doi: 10.3390/pr8091134. DOI
Kousaalya A.B., Beyene S.D., Gopal V., Ayalew B., Pilla S. Green epoxy synthesized from Perilla frutescens: A study on epoxidation and oxirane cleavage kinetics of high-linolenic oil. Ind. Crop Prod. 2018;123:25–34. doi: 10.1016/j.indcrop.2018.06.047. DOI
Mecozzi F., Dong J.J., Angelone D., Browne W.R., Eisink N. Oxidative Cleavage of Alkene C=C Bonds Using a Manganese Catalyzed Oxidation with H2O2 Combined with Periodate Oxidation. Eur. J. Org. Chem. 2019;2019:7151–7158. doi: 10.1002/ejoc.201901380. PubMed DOI PMC
Nogales-Delgado S., Martin J.M.E., Ocana M.S. Use of mild reaction conditions to improve quality parameters and sustainability during biolubricant production. Biomass Bioenerg. 2022;161:106456. doi: 10.1016/j.biombioe.2022.106456. DOI
Pantone V., Laurenza A.G., Annese C., Fracassi F., Fusco C., Nacci A., Russo A., D’Accolti L. Methanolysis of epoxidized soybean oil in continuous flow conditions. Ind. Crop Prod. 2017;109:1–7. doi: 10.1016/j.indcrop.2017.08.001. DOI
Polese R., Pintus E., Nuvoli L., Tiana M., Pintus S., Satta G., Beccu A., Gaspa S., Carraro M., De Luca L., et al. Aquivion perfluorosulfonic superacid as an effective catalyst for selective epoxidation of vegetable oils. R. Soc. Open Sci. 2022;9:211554. doi: 10.1098/rsos.211554. PubMed DOI PMC
Japir A., Salimon J., Derawi D., Bahadi M., Yusop M.R. Separation of Free Fatty Acids from High Free Fatty Acid Crude Palm Oil Using Short-Path Distillation. AIP Conf. Proc. 2016;1784:030001. doi: 10.1063/1.4966739. DOI
Ceron A.A., Boas R.N.V., Biaggio F.C., de Castro H.F. Synthesis of biolubricant by transesterification of palm kernel oil with simulated fusel oil: Batch and continuous processes. Biomass Bioenerg. 2018;119:166–172. doi: 10.1016/j.biombioe.2018.09.013. DOI
Mungroo R., Pradhan N.C., Goud V.V., Dalai A.K. Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. J. Am. Oil Chem. Soc. 2008;85:887–896. doi: 10.1007/s11746-008-1277-z. DOI
La Scala J., Wool R.P. Effect of FA composition on epoxidation kinetics of TAG. J. Am. Oil Chem. Soc. 2002;79:373–378. doi: 10.1007/s11746-002-0491-9. DOI
Sammaiah A., Padmaja K.V., Prasad R.B.N. Synthesis of Epoxy Jatropha Oil and its Evaluation for Lubricant Properties. J. Oleo Sci. 2014;63:637–643. doi: 10.5650/jos.ess13172. PubMed DOI
Xia W., Budge S.M., Lumsden M.D. H-1-NMR Characterization of Epoxides Derived from Polyunsaturated Fatty Acids. J. Am. Oil Chem. Soc. 2016;93:467–478. doi: 10.1007/s11746-016-2800-2. DOI
Piazza G.J., Nunez A., Foglia T.A. Epoxidation of fatty acids, fatty methyl esters, and alkenes by immobilized oat seed peroxygenase. J. Mol. Catal. B Enzym. 2003;21:143–151. doi: 10.1016/S1381-1177(02)00122-4. DOI
Mushtaq M., Tan I.M., Nadeem M., Devi C., Lee S.Y.C., Sagir M., Rashid U. Epoxidation of methyl esters derived from Jatropha oil: An optimization study. Grasas Aceites. 2013;64:103–114. doi: 10.3989/gya.084612. DOI
Bachler C., Schober S., Mittelbach M. Simulated Distillation for Biofuel Analysis. Energy Fuels. 2010;24:2086–2090. doi: 10.1021/ef901295s. DOI
Yuan W., Hansen A.C., Zhang Q. Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels. Fuel. 2005;84:943–950. doi: 10.1016/j.fuel.2005.01.007. DOI
Lee P.L., Yunus W.M.Z.W., Yeong S.K., Abdullah D.K., Lim W.H. Optimization of the Epoxidation of Methyl Ester of Palm Fatty Acid Distillate. J. Oil Palm. Res. 2009;21:675–682.
Wadumesthrige K., Salley S.O., Ng K.Y.S. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl esters. Fuel Process. Technol. 2009;90:1292–1299. doi: 10.1016/j.fuproc.2009.06.013. DOI
Turco R., Tesser R., Russo V., Cogliano T., Di Serio M., Santacesaria E. Epoxidation of Linseed Oil by Performic Acid Produced In Situ. Ind. Eng. Chem. Res. 2021;60:16607–16618. doi: 10.1021/acs.iecr.1c02212. DOI
de Haro J.C., Izarra I., Rodriguez J.F., Perez A., Carmona M. Modelling the epoxidation reaction of grape seed oil by peracetic acid. J. Clean. Prod. 2016;138:70–76. doi: 10.1016/j.jclepro.2016.05.015. DOI
Hajek M., Skopal F., Kwiecien J., Cernoch M. Determination of esters in glycerol phase after transesterification of vegetable oil. Talanta. 2010;82:283–285. doi: 10.1016/j.talanta.2010.04.035. PubMed DOI
Holcapek M., Lisa M., Jandera P., Kabatova N. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 2005;28:1315–1333. doi: 10.1002/jssc.200500088. PubMed DOI
Anuar S.T., Zhao Y.Y., Mugo S.M., Curtis J.M. Monitoring the Epoxidation of Canola Oil by Non-aqueous Reversed Phase Liquid Chromatography/Mass Spectrometry for Process Optimization and Control. J. Am. Oil Chem. Soc. 2012;89:1951–1960. doi: 10.1007/s11746-012-2103-1. DOI
Christie W.W. Mass Spectrometry of Methyl Esters. [(accessed on 10 January 2023)]. Available online: https://www.lipidmaps.org/resources/lipidweb/lipidweb_html/ms/methesters/me-epoxy/index.htm.
Vaclavik A., Christian E.W. Essentials of Food Science. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2007.
Joback K.G., Reid R.C. Estimation of Pure-Component Properties from Group-Contributions. Chem. Eng. Commun. 1987;57:233–243. doi: 10.1080/00986448708960487. DOI
Akasaka K., Akama T., Ohrui H., Meguro H. Measurement of Hydroxy and Hydroperoxy Fatty-Acids by a High-Pressure Liquid-Chromatography with a Column-Switching System. Biosci. Biotechnol. Biochem. 1993;57:2016–2019. doi: 10.1271/bbb.57.2016. DOI
Hajek M., Skopal F., Machek J. Simplification of separation of the reaction mixture after transesterification of vegetable oil. Eur. J. Lipid Sci. Technol. 2008;110:347–350. doi: 10.1002/ejlt.200700228. DOI
Musil M., Hajek M., Skopal F., Vavra A. Improved method of water removal from vegetable oil. Chem. Pap. 2019;73:767–769. doi: 10.1007/s11696-018-0610-8. DOI