Epoxidation of Methyl Esters as Valuable Biomolecules: Monitoring of Reaction

. 2023 Mar 21 ; 28 (6) : . [epub] 20230321

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36985791

Grantová podpora
SGS_2023_008 University of Pardubice

The paper is focused on the epoxidation of methyl esters prepared from oil crops with various profiles of higher fatty acids, especially unsaturated, which are mainly contained in the non-edible linseed and Camelina sativa oil (second generation). The novelty consists in the separation and identification of all products with oxirane ring formed through a reaction and in the determination of time course. Through the epoxidation, many intermediates and final products were formed, i.e., epoxides with different number and/or different position of oxirane rings in carbon chain. For the determination, three main methods (infrared spectroscopy, high-pressure liquid chromatography and gas chromatography with mass spectrometry) were applied. Only gas chromatography enables the separation of individual epoxides, which were identified on the base of the mass spectra, molecule ion and time course of products. The determination of intermediates enables: (i) control of the epoxidation process, (ii) determination of the mixture of epoxides in detail and so the calculation of selectivity of each product. Therefore, the epoxidation will be more environmentally friendly especially for advanced applications of non-edible oil crops containing high amounts of unsaturated fatty acids.

Zobrazit více v PubMed

Ben Bacha A., Alonazi M., Alharbi M.G., Horchani H., Ben Abdelmalek I. Biodiesel Production by Single and Mixed Immobilized Lipases Using Waste Cooking Oil. Molecules. 2022;27:8736. doi: 10.3390/molecules27248736. PubMed DOI PMC

Hajek M., Vavra A., Carmona H.D., Kocik J. The Catalysed Transformation of Vegetable Oils or Animal Fats to Biofuels and Bio-Lubricants: A Review. Catalysts. 2021;11:1118. doi: 10.3390/catal11091118. DOI

Tan H.W., Aziz A.R.A., Aroua M.K. Glycerol production and its applications as a raw material: A review. Renew. Sustain. Energy Rev. 2013;27:118–127. doi: 10.1016/j.rser.2013.06.035. DOI

Karak N. Vegetable Oil-Based Epoxies. Woodhead Publishing; Sawston, England: 2012.

Nogales-Delgado S., Cabanillas A.G., Romero A.G., Martin J.M.E. Monitoring tert-Butylhydroquinone Content and Its Effect on a Biolubricant during Oxidation. Molecules. 2022;27:8931. doi: 10.3390/molecules27248931. PubMed DOI PMC

Atzori L., Comes A., Fusaro L., Aprile C., Cutrufello M.G. Aluminosilicate-Supported Catalysts for the Synthesis of Cyclic Carbonates by Reaction of CO2 with the Corresponding Epoxides. Molecules. 2022;27:8883. doi: 10.3390/molecules27248883. PubMed DOI PMC

Manka D., Siewniak A. Deep Eutectic Solvents as Catalysts for Cyclic Carbonates Synthesis from CO2 and Epoxides. Molecules. 2022;27:9006. doi: 10.3390/molecules27249006. PubMed DOI PMC

Dunn R.O. Thermal analysis of alternative diesel fuels from vegetable oils. J. Am. Oil Chem. Soc. 1999;76:109–115. doi: 10.1007/s11746-999-0056-9. DOI

Orsavova J., Misurcova L., Ambrozova J., Vicha R., Mlcek J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015;16:12871–12890. doi: 10.3390/ijms160612871. PubMed DOI PMC

Fukuda H., Kondo A., Noda H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 2001;92:405–416. doi: 10.1016/S1389-1723(01)80288-7. PubMed DOI

Bhuiya M.M.K., Rasul M.G., Khan M.M.K., Ashwath N. Biodiesel production and characterisation of poppy (Papaver somniferum L.) seed oil methyl ester as a source of 2nd generation biodiesel feedstock. Ind. Crops Prod. 2020;152:112493. doi: 10.1016/j.indcrop.2020.112493. DOI

Wahl H.G., Habel S.Y., Schmieder N., Liebich H.M. Identification of Cis-Trans-Isomers of Methyl-Ester and Oxazoline Derivatives of Unsaturated Fatty-Acids Using Gc-Ftir-Ms. J. High Resolut. Chromatogr. 1994;17:543–548. doi: 10.1002/jhrc.1240170707. DOI

Santacesaria E., Turco R., Russo V., Tesser R., Di Serio M. Soybean Oil Epoxidation: Kinetics of the Epoxide Ring Opening Reactions. Processes. 2020;8:1134. doi: 10.3390/pr8091134. DOI

Kousaalya A.B., Beyene S.D., Gopal V., Ayalew B., Pilla S. Green epoxy synthesized from Perilla frutescens: A study on epoxidation and oxirane cleavage kinetics of high-linolenic oil. Ind. Crop Prod. 2018;123:25–34. doi: 10.1016/j.indcrop.2018.06.047. DOI

Mecozzi F., Dong J.J., Angelone D., Browne W.R., Eisink N. Oxidative Cleavage of Alkene C=C Bonds Using a Manganese Catalyzed Oxidation with H2O2 Combined with Periodate Oxidation. Eur. J. Org. Chem. 2019;2019:7151–7158. doi: 10.1002/ejoc.201901380. PubMed DOI PMC

Nogales-Delgado S., Martin J.M.E., Ocana M.S. Use of mild reaction conditions to improve quality parameters and sustainability during biolubricant production. Biomass Bioenerg. 2022;161:106456. doi: 10.1016/j.biombioe.2022.106456. DOI

Pantone V., Laurenza A.G., Annese C., Fracassi F., Fusco C., Nacci A., Russo A., D’Accolti L. Methanolysis of epoxidized soybean oil in continuous flow conditions. Ind. Crop Prod. 2017;109:1–7. doi: 10.1016/j.indcrop.2017.08.001. DOI

Polese R., Pintus E., Nuvoli L., Tiana M., Pintus S., Satta G., Beccu A., Gaspa S., Carraro M., De Luca L., et al. Aquivion perfluorosulfonic superacid as an effective catalyst for selective epoxidation of vegetable oils. R. Soc. Open Sci. 2022;9:211554. doi: 10.1098/rsos.211554. PubMed DOI PMC

Japir A., Salimon J., Derawi D., Bahadi M., Yusop M.R. Separation of Free Fatty Acids from High Free Fatty Acid Crude Palm Oil Using Short-Path Distillation. AIP Conf. Proc. 2016;1784:030001. doi: 10.1063/1.4966739. DOI

Ceron A.A., Boas R.N.V., Biaggio F.C., de Castro H.F. Synthesis of biolubricant by transesterification of palm kernel oil with simulated fusel oil: Batch and continuous processes. Biomass Bioenerg. 2018;119:166–172. doi: 10.1016/j.biombioe.2018.09.013. DOI

Mungroo R., Pradhan N.C., Goud V.V., Dalai A.K. Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. J. Am. Oil Chem. Soc. 2008;85:887–896. doi: 10.1007/s11746-008-1277-z. DOI

La Scala J., Wool R.P. Effect of FA composition on epoxidation kinetics of TAG. J. Am. Oil Chem. Soc. 2002;79:373–378. doi: 10.1007/s11746-002-0491-9. DOI

Sammaiah A., Padmaja K.V., Prasad R.B.N. Synthesis of Epoxy Jatropha Oil and its Evaluation for Lubricant Properties. J. Oleo Sci. 2014;63:637–643. doi: 10.5650/jos.ess13172. PubMed DOI

Xia W., Budge S.M., Lumsden M.D. H-1-NMR Characterization of Epoxides Derived from Polyunsaturated Fatty Acids. J. Am. Oil Chem. Soc. 2016;93:467–478. doi: 10.1007/s11746-016-2800-2. DOI

Piazza G.J., Nunez A., Foglia T.A. Epoxidation of fatty acids, fatty methyl esters, and alkenes by immobilized oat seed peroxygenase. J. Mol. Catal. B Enzym. 2003;21:143–151. doi: 10.1016/S1381-1177(02)00122-4. DOI

Mushtaq M., Tan I.M., Nadeem M., Devi C., Lee S.Y.C., Sagir M., Rashid U. Epoxidation of methyl esters derived from Jatropha oil: An optimization study. Grasas Aceites. 2013;64:103–114. doi: 10.3989/gya.084612. DOI

Bachler C., Schober S., Mittelbach M. Simulated Distillation for Biofuel Analysis. Energy Fuels. 2010;24:2086–2090. doi: 10.1021/ef901295s. DOI

Yuan W., Hansen A.C., Zhang Q. Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels. Fuel. 2005;84:943–950. doi: 10.1016/j.fuel.2005.01.007. DOI

Lee P.L., Yunus W.M.Z.W., Yeong S.K., Abdullah D.K., Lim W.H. Optimization of the Epoxidation of Methyl Ester of Palm Fatty Acid Distillate. J. Oil Palm. Res. 2009;21:675–682.

Wadumesthrige K., Salley S.O., Ng K.Y.S. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl esters. Fuel Process. Technol. 2009;90:1292–1299. doi: 10.1016/j.fuproc.2009.06.013. DOI

Turco R., Tesser R., Russo V., Cogliano T., Di Serio M., Santacesaria E. Epoxidation of Linseed Oil by Performic Acid Produced In Situ. Ind. Eng. Chem. Res. 2021;60:16607–16618. doi: 10.1021/acs.iecr.1c02212. DOI

de Haro J.C., Izarra I., Rodriguez J.F., Perez A., Carmona M. Modelling the epoxidation reaction of grape seed oil by peracetic acid. J. Clean. Prod. 2016;138:70–76. doi: 10.1016/j.jclepro.2016.05.015. DOI

Hajek M., Skopal F., Kwiecien J., Cernoch M. Determination of esters in glycerol phase after transesterification of vegetable oil. Talanta. 2010;82:283–285. doi: 10.1016/j.talanta.2010.04.035. PubMed DOI

Holcapek M., Lisa M., Jandera P., Kabatova N. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 2005;28:1315–1333. doi: 10.1002/jssc.200500088. PubMed DOI

Anuar S.T., Zhao Y.Y., Mugo S.M., Curtis J.M. Monitoring the Epoxidation of Canola Oil by Non-aqueous Reversed Phase Liquid Chromatography/Mass Spectrometry for Process Optimization and Control. J. Am. Oil Chem. Soc. 2012;89:1951–1960. doi: 10.1007/s11746-012-2103-1. DOI

Christie W.W. Mass Spectrometry of Methyl Esters. [(accessed on 10 January 2023)]. Available online: https://www.lipidmaps.org/resources/lipidweb/lipidweb_html/ms/methesters/me-epoxy/index.htm.

Vaclavik A., Christian E.W. Essentials of Food Science. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2007.

Joback K.G., Reid R.C. Estimation of Pure-Component Properties from Group-Contributions. Chem. Eng. Commun. 1987;57:233–243. doi: 10.1080/00986448708960487. DOI

Akasaka K., Akama T., Ohrui H., Meguro H. Measurement of Hydroxy and Hydroperoxy Fatty-Acids by a High-Pressure Liquid-Chromatography with a Column-Switching System. Biosci. Biotechnol. Biochem. 1993;57:2016–2019. doi: 10.1271/bbb.57.2016. DOI

Hajek M., Skopal F., Machek J. Simplification of separation of the reaction mixture after transesterification of vegetable oil. Eur. J. Lipid Sci. Technol. 2008;110:347–350. doi: 10.1002/ejlt.200700228. DOI

Musil M., Hajek M., Skopal F., Vavra A. Improved method of water removal from vegetable oil. Chem. Pap. 2019;73:767–769. doi: 10.1007/s11696-018-0610-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...