Local adaptations in bryophytes revisited: the genetic structure of the calcium-tolerant peatmoss Sphagnum warnstorfii along geographic and pH gradients
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
25628880
PubMed Central
PMC4298450
DOI
10.1002/ece3.1351
Knihovny.cz E-zdroje
- Klíčová slova
- Calcium tolerance, Sphagnum warnstorfii, ecotypic adaptation, hybridization, microsatellites, population structure,
- Publikační typ
- časopisecké články MeSH
Bryophytes dominate some ecosystems despite their extraordinary sensitivity to habitat quality. Nevertheless, some species behave differently across various regions. The existence of local adaptations is questioned by a high dispersal ability, which is thought to redistribute genetic variability among populations. Although Sphagnum warnstorfii is an important ecosystem engineer in fen peatlands, the causes of its rather wide niche along the pH/calcium gradient are poorly understood. Here, we studied the genetic variability of its global populations, with a detailed focus on the wide pH/calcium gradient in Central Europe. Principal coordinates analysis of 12 polymorphic microsatellite loci revealed a significant gradient coinciding with water pH, but independent of geography; even samples from the same fens were clearly separated along this gradient. However, most of the genetic variations remained unexplained, possibly because of the introgression from phylogenetically allied species. This explanation is supported by the small heterogeneous cluster of samples that appeared when populations morphologically transitional to S. subnites, S. rubellum, or S. russowii were included into the analysis. Alternatively, this unexplained variation might be attributed to a legacy of glacial refugia with recently dissolved ecological and biogeographic consequences. Isolation by distance appeared at the smallest scale only (up to 43 km). Negative spatial correlations occurred more frequently, mainly at long distances (up to 950 km), implying a genetic similarity among samples which are very distant geographically. Our results confirm the high dispersal ability of peatmosses, but simultaneously suggested that their ability to cope with a high pH/calcium level is at least partially determined genetically, perhaps via specific physiological mechanisms or a hummock-forming ability.
Department of Biology Duke University Durham NC 27708 USA
Plant Science and Conservation Chicago Botanic Gardens 1000 Lake Cook Road Glencoe IL 60022 USA
Zobrazit více v PubMed
Aggenbach CJS, Backx H, Emsens WJ, Grootjans AP, Lamers LPM, Smolders AJP, et al. Do high iron concentrations in rewetted rich fens hamper restoration? Preslia. 2013;85:405–420.
Anderson DS, Davis RB. Janssens JA. Relationships of bryophytes and lichens to environmental gradients in Maine peatlands. Vegetatio. 1995;120:147–159.
Andrus RE. Some aspects of Sphagnum ecology. Can. J. Bot. 1986;64:416–426.
Buryová B. Shaw AJ. Phenotypic plasticity in Philonotis fontana (Bryopsida: Bartramiaceae) J. Bryol. 2005;27:13–22.
Cronberg N. Clonal structure and fertility in a sympatric population of the peat mosses Sphagnum rubellum and Sphagnum capillifolium. Can. J. Bot. 1996;74:1375–1385.
Cronberg N. Population structure and interspecific differentiation of the peat moss sister species Sphagnum rubellum and S. capillifolium (Sphagnaceae) in northern Europe. Plant Syst. Evol. 1998;209:139–158.
Daniels RE. Eddy A. Handbook of European Sphagna. Huntington: Natural Environment Research Council, Institute of Terrestrial Ecology; 1985.
Dierssen B. Dierssen K. Vegetation und Flora der Schwarzwaldmoore. Karlsruhe: Landesanstalt für Umweltschutz Baden-Württemberg, Institut für Ökologie und Naturschutz; 1984. , and (Vol. 39).
Dierssen K. Dierssen B. Ökosysteme Mitteleuropas aus geobotanischer Sicht: Moore. Stuttgart: Ulmer; 2001.
Doyle JJ. Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987;19:11–15.
Evanno G, Regnaut S. Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611–2620. PubMed
Feldberg K, Váňa J, Long DG, Shaw AJ, Hentschel J. Heinrichs J. A phylogeny of Adelanthaceae (Jungermanniales, Marchantiophyta) based on nuclear and chloroplast DNA markers, with comments on classification, cryptic speciation and biogeography. Mol. Phylogenet. Evol. 2010;55:293–304. PubMed
Fernandez CC, Shevock JR, Glazer AN. Thompson JN. Cryptic species within the cosmopolitan desiccation-tolerant moss Grimmia laevigata. Proc. Natl Acad. Sci. USA. 2006;103:637–642. PubMed PMC
Flatberg K, Thingsgaard K. Såstad S. Interploidal gene flow and introgression in bryophytes: Sphagnum girgensohnii x S. russowii, a case of spontaneous neotriploidy. J. Bryol. 2006;28:27–37.
Frey W. Kürschner H. Asexual reproduction, habitat colonization and habitat maintenance in Bryophytes. A review. Flora. 2011;206:173–184.
Gajewski K, Viau A, Sawada M, Atkinson D. Wilson S. Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years. Glob. Biochem. Cycles. 2001;15:297–310.
Granath G, Strengbom J. Rydin H. Rapid ecosystem shifts in peatlands: linking plant physiology and succession. Ecology. 2010;91:3047–3056. PubMed
Gunnarsson U, Shaw AJ. Lönn M. Local-scale genetic structure in the peatmoss Sphagnum fuscum. Mol. Ecol. 2007;16:305–312. PubMed
Hájek M, Horsák M, Hájková P. Dítě D. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant Ecol. Evol. Syst. 2006;8:97–114.
Hájek M, Roleček J, Cottenie K, Kintrová K, Horsák M, Poulíčková A, et al. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. J. Biogeogr. 2011;38:1683–1693.
Hájek M, Plesková Z, Syrovátka V, Peterka T, Laburdová J, Kintrová K, et al. Patterns in moss element concentrations in fens across species, habitats, and regions. Perspect. Plant Ecol. Evol. Syst. 2014;16:203–218.
Hájková P. Hájek M. Sphagnum distribution patterns along environmental gradients in Bulgaria. J. Bryol. 2007;29:18–26.
Hájková P, Hájek M, Apostolova I, Zelený D. Dítě D. Shifts in the ecological behaviour of plant species between two distant regions: evidence from the base richness gradient in mires. J. Biogeogr. 2008;35:282–294.
Hill MO, Preston CD, Bosanquet SDS. Roy DB. Attributes of British and Irish mosses, liverworts, and hornworts. Norwich: NFRC Centre for Ecology and Hydrology and Countryside Council for Wales, Saxon Print Group; 2007.
Holyoak DT. Pedersen N. Conflicting molecular and morphological evidence of evolution within the Bryaceae (Bryopsida) and its implications for generic taxonomy. J. Bryol. 2007;29:111–124.
Horsák M, Chytrý M, Pokryszko B, Danihelka J, Ermakov N, Hájek M, et al. Habitats of relict terrestrial snails in southern Siberia: lessons for the reconstruction of palaeoenvironments of full-glacial Europe. J. Biogeogr. 2010;37:1450–1462.
Horsák M, Hájek M, Spitale D, Hájková P, Dítě D. Nekola J C. The age of island-like habitats impacts habitat specialist species richness. Ecology. 2012;93:1106–1114. PubMed
Hufford KM. Mazer SJ. Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol. Evol. 2003;18:147–155.
Hutsemekers V, Hardy OJ, Mardulyn P, Shaw AJ. Vanderpoorten A. Macroecological patterns of genetic structure and diversity in the aquatic moss Platyhypnidium riparioides. New Phytol. 2010;185:852–864. PubMed
Ingold CT. Spore Liberation. Clarendon Press: Oxford Univ. Press; 1965.
Jakobsson M. Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–1806. PubMed
Johnson MG, Shaw B, Zhou P. Shaw AJ. Genetic analysis of the peat moss Sphagnum cribrosum (Sphagnaceae) indicates independent origins of an extreme infraspecific morphology shift. Biol. J. Linn. Soc. 2012;106:137–153.
Jules ES. Shaw AJ. Adaptation to metal-contaminated soils in populations of the moss, Ceratodon purpureus: vegetative growth and reproductive expression. Am. J. Bot. 1994;81:791–797.
Karlin EF, Boles SB. Shaw AJ. Resolving boundaries between species in Sphagnum section Subsecunda using microsatellite markers. Taxon. 2008;57:1189.
Karlin EF, Boles SB, Ricca M, Temsch EM, Greilhuber J. Shaw AJ. Three-genome mosses: complex double allopolyploid origins for triploid gametophytes in Sphagnum. Mol. Ecol. 2009;18:1439–1454. PubMed
Karlin EF, Andrus RE, Boles SB. Shaw AJ. One haploid parent contributes 100% of the gene pool for a widespread species in northwest North America. Mol. Ecol. 2011;20:753–767. PubMed
Karlin EF, Hotchkiss SC, Boles SB, Stenøien HK, Hassel K, Flatberg HK, et al. High genetic diversity in a remote island population system: sans sex. New Phytol. 2012;193:1088–1097. PubMed
Karlin EF, Buck WR, Seppelt RD, Boles SB. Shaw A J. The double allopolyploid Sphagnum ×falcatulum (Sphagnaceae) in Tierra del Fuego, a Holantarctic perspective. J. Bryol. 2013;35:157–172.
Karlin EF, Temsch EM, Bizuru E, Marino J, Boles SB, Devos N, et al. Invisible in plain sight: recurrent double allopolyploidy in the African Sphagnum ×planifolium (Sphagnaceae) Bryologist. 2014;117:187–201.
Lee CR. Mitchell-Olds T. Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol. Ecol. 2011;20:4631–4642. PubMed PMC
Miserere L, Montacchini F. Buffa G. Ecology of some mire and bog plant communities in the Western Italian Alps. J. Limnol. 2003;62:88–96.
Natcheva R. Cronberg N. Genetic diversity in populations of Sphagnum capillifolium from the mountains of Bulgaria, and their possible refugial role. J. Bryol. 2003;25:91–99.
Natcheva R. Cronberg N. Recombination and introgression of nuclear and chloroplast genomes between the peat mosses, Sphagnum capillifolium and Sphagnum quinquefarium. Mol. Ecol. 2007;16:811–818. PubMed
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al. 2013. vegan: Community Ecology Package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan.
Orsini L, Vanoverbeke J, Swillen I. Mergea yJ. Meester L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 2013;22:5983–5999. PubMed
Pakarinen P. Ecological indicators and species groups of bryophytes in boreal peatlands. In: Kivinen E, Heikurainen L, Pakarinen P, editors. Classification of peat and peatlands, Proceedings of the international symposium Hyytiälä. Helsinki: International Peat Society; 1979. pp. 121–134.
Peakall ROD. Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6:288–295. PubMed PMC
Pritchard JK, Stephens M. Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. PubMed PMC
Ramaiya M, Johnson MG, Shaw B, Heinrichs J, Hentschel J, von Konrat M, et al. Morphologically cryptic biological species within the liverwort Frullania asagrayana. Am. J. Bot. 2010;97:1707–1718. PubMed
Ricca M, Beecher FW, Boles SB, Temsch E, Greilhuber J, Karlin EF, et al. Cytotype variation and allopolyploidy in North American species of the Sphagnum subsecundum complex (Sphagnaceae) Am. J. Bot. 2008;95:1606–1620. PubMed
Ricca M, Szövényi P, Temsch EM, Johnson MG. Shaw AJ. Interploidal hybridization and mating patterns in the Sphagnum subsecundum complex. Mol. Ecol. 2011;20:3202–3218. PubMed
Såstad SM. Genetic and environmental sources of variation in leaf morphology of Sphagnum fallax and Sphagnum isoviitae (Bryopsida): comparison of experiments conducted in the field and laboratory. Can. J. Bot. 1999;77:1–10.
Såstad SM, Pedersen B. Digre K. Habitat-specific genetic effects on growth rate and morphology across pH and water level gradients within a population of the moss Sphagnum angustifoliumSphagnaceae. Am. J. Bot. 1999;86:1687–1698. PubMed
Såstad SM, Flatberg KI. Hanssen L. Origin, taxonomy and population structure of the allopolyploid peat moss Sphagnum majus. Plant Syst. Evol. 2000;225:73–84.
Shaw AJ. Biogeographic patterns and cryptic speciation in bryophytes. J. Biogeogr. 2001;28:253–261.
Shaw AJ. Cox CJ. Variation in “biodiversity value” of peatmoss species in Sphagnum section Acutifolia (Sphagnaceae) Am. J. Bot. 2005;92:1774–1783. PubMed
Shaw AJ. Srodon M. Clonal diversity in Sphagnum rubellum Wils. Bryologist. 1995;98:261–264.
Shaw AJ, Cao T, Wang L, Flatberg KI, Flatberg B, Shaw B, et al. Genetic variation in three Chinese peat mosses (Sphagnum) based on microsatellite markers, with primer information and analysis of ascertainment bias. Bryologist. 2008;111:271–281.
Snäll T, Fogelqvist J, Ribeir OPJ. Lascoux M. Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analysed by three different methods. Mol. Ecol. 2004;13:2109–2119. PubMed
Stenøien HK. Såstad SM. Genetic structure in three haploid peat mosses (Sphagnum. Heredity. 1999;82:391–400. PubMed
Stenøien HK, Shaw AJ, Shaw B, Hassel K. Gunnarsson U. North American origin and recent European establishments of the amphi-Atlantic peat moss Sphagnum angermanicum. Evolution. 2011;65:1181–1194. PubMed
Sundberg S. The Sphagnum air-gun mechanism resurrected. New Phytol. 2005;185:886–889. PubMed
Sundberg S. Spore rain in relation to regional sources and beyond. Ecography. 2013;36:364–373.
Sundberg S. Rydin H. Habitat requirements for establishment of Sphagnum from spores. J. Ecol. 2002;90:268–278.
Szövényi P, Terracciano S, Ricca M, Giordano S. Shaw AJ. Recent divergence, intercontinental dispersal and shared polymorphism are shaping the genetic structure of amphi-Atlantic peatmoss populations. Mol. Ecol. 2008;17:5364–5377. PubMed
Szövényi P, Hock Z, Korpelainen H. Shaw AJ. Spatial pattern of nucleotide polymorphism indicates molecular adaptation in the bryophyte Sphagnum fimbriatum. Mol. Phylogenet. Evol. 2009;53:277–286. PubMed
Szövényi P, Sundberg S. Shaw AJ. Long-distance dispersal and genetic structure of natural populations: an assessment of the inverse isolation hypothesis in peat mosses. Mol. Ecol. 2012;21:5461–5472. PubMed
Szurdoki E, Márton O. Szövényi P. Genetic and morphological diversity of Sphagnum angustifoliumS. flexuosum and S. fallax in Europe. Taxon. 2014;63:237–248.
Telford LJ, Vandvik V. Birks HJB. Dispersal limitations matter for microbial morphospecies. Science. 2006;312:1015. PubMed
Thingsgaard K. Population structure and genetic diversity of the amphiatlantic haploid peatmoss Sphagnum affne (Sphagnopsida) Heredity. 2001;87:485–496. PubMed
Turesson G. The genotypical response of the plant species to the habitat. Hereditas. 1922;3(Suppl. 3):211–350.
Vanderpoorten A. Tignon M. Amplified fragments length polymorphism between populations of Amblystegium tenax exposed to contrasting water chemistries. J. Bryol. 2000;22:252–262.
Vanderpoorten A, Devos N, Goffinet B, Hardy OJ. Shaw A J. The barriers to oceanic island radiation in bryophytes: insights from the phylogeography of the moss Grimmia montana. J. Biogeogr. 2008;35:654–663.
Vitt DH. Slack NG. Niche diversification of Sphagnum relative to environmental factors in northern Minnesota peatlands. Can. J. Bot. 1984;62:1409–1430.
Wojtuń B, Sendyk A. Martyniak D. Sphagnum species along environmental gradients in mires of the Sudety Mountains (SW Poland) Boreal Environ. Res. 2013;18:74–88.
Zartman CE, McDaniel SF. Shaw AJ. Experimental habitat fragmentation increases linkage disequilibrium but does not affect genetic diversity or population structure in the Amazonian liverwort Radula flaccida. Mol. Ecol. 2006;15:2305–2315. PubMed