Sensing properties of multiwalled carbon nanotubes grown in MW plasma torch: electronic and electrochemical behavior, gas sensing, field emission, IR absorption

. 2015 Jan 26 ; 15 (2) : 2644-61. [epub] 20150126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25629702

Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 µm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‑modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures.

Zobrazit více v PubMed

Meyyappan M. Carbon Nanotubes: Science and Applications. 1st ed. CRC Press; Boca Raton, FL, USA: 2005. p. 304.

Backes C. Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water. Springer; Berlin, Germany: 2012. p. 203.

Zajíčková L., Jašek O., Eliáš M., Synek P., Lazar L., Schneeweiss O., Hanzlíková R. Synthesis of carbon nanotubes by plasma-enhanced chemical vapor deposition in an atmospheric-pressure microwave torch. Pure Appl. Chem. 2010;82:1259–1272.

Yen J.H., Leu I.C., Wu M.T., Lin C.C., Hon M.H. Density control for carbon nanotube arrays synthesized by ICP-CVD using AAO/Si as a nanotemplate. Electrochem. Solid State Lett. 2004;7:H29–H31.

Prášek J., Drbohlavová J., Chomoucká J., Hubálek J., Jašek O., Adam V., Kizek R. Methods for carbon nanotubes synthesis-review. J. Mater. Chem. 2011;21:15872–15884.

Chen H., Roy A., Baek J.B., Zhu L., Qu J., Dai L.M. Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater. Sci. Eng. R-Rep. 2010;70:63–91.

Tsierkezos N.G., Szroeder P., Ritter U. Multi-walled carbon nanotubes as electrode materials for electrochemical studies of organometallic compounds in organic solvent media. Monatshefte Chem.-Chem. Mon. 2011;142:233–242.

Tsierkezos N.G., Szroeder P., Ritter U. Application of Films Consisting of Carbon Nanoparticles for Electrochemical Detection of Redox Systems in Organic Solvent Media. Fuller. Nanotub. Carbon Nanostruct. 2011;19:505–516.

Ahlskog M., Hakonen P., Paalanen M., Roschier L., Tarkiainen R. Multiwalled carbon nanotubes as building blocks in nanoelectronics. J. Low Temp. Phys. 2001;124:335–352.

Plombon J.J., O'Brien K.P., Gstrein F., Dubin V.M., Jiao Y. High-frequency electrical properties of individual and bundled carbon nanotubes. Appl. Phys. Lett. 2007;90 doi: 10.1063/1.2437724. DOI

Ksenevich V.K., Gorbachuk N.I., Poklonski N.A., Samuilov V.A., Kozlov M.E., Wieck A.D. Impedance of Single-Walled Carbon Nanotube Fibers. Fuller. Nanotub. Carbon Nanostruct. 2012;20:434–438.

Geng S.N., Wang P., Ding T.H. Impedance characteristics and electrical modelling of multi-walled carbon nanotube/silicone rubber composites. Compos. Sci. Technol. 2011;72:36–40.

Allaoui A., Hoa S.V., Pugh M.D. The electronic transport properties and microstructure of carbon nanofiber/epoxy composites. Compos. Sci. Technol. 2008;68:410–416.

Popov V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. R Rep. 2004;43:61–102.

Goak J.C., Lee H.S., Han J.H., Park J.-Y., Seo Y., Kim K.B., Lee N. New metric for evaluating the purity of single-walled carbon nanotubes using ultraviolet–visible-near infrared absorption spectroscopy. Carbon. 2014;75:68–80.

Kruss S., Hilmer A.J., Zhang J., Reuel N.F., Mu B., Strano M.S. Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 2013;65:1933–1950. PubMed

Huang H., Zou M., Xu X., Liu F., Li N., Wang X. Near-infrared fluorescence spectroscopy of single-walled carbon nanotubes and its applications. TrAC Trends Anal. Chem. 2011;30:1109–1119.

Gohier A., Dhar A., Gorintin L., Bondavalli P., Bonnassieux Y., Cojocaru C.S. All-printed infrared sensor based on multiwalled carbon nanotubes. Appl. Phys. Lett. 2011;98 doi: 10.1063/1.3552686. DOI

Aliev A.E. Bolometric detector on the basis of single-wall carbon nanotube/polymer composite. Infrared Phys. Technol. 2008;51:541–545.

Afrin R., Shah N.A., Abbas M., Amin M., Bhatti A.S. Design and analysis of functional multiwalled carbon nanotubes for infrared sensors. Sens. Actuators A Phys. 2013;203:142–148.

Gao C., Guo Z., Liu J.-H., Huang X.-J. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale. 2012;4:1948–1963. PubMed

Vashist S.K., Zheng D., Al-Rubeaan K., Luong J.H.T., Sheu F.-S. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol. Adv. 2011;29:169–188. PubMed

Jacobs C.B., Peairs M.J., Venton B.J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta. 2010;662:105–127. PubMed

Ahammad A.J.S., Lee J.J., Rahman M.A. Electrochemical Sensors Based on Carbon Nanotubes. Sensors. 2009;9:2289–2319. PubMed PMC

Agüí L., Yáñez-Sedeño P., Pingarrón J.M. Role of carbon nanotubes in electroanalytical chemistry: A review. Anal. Chim. Acta. 2008;622:11–47. PubMed

Ye M.L., Xu B., Zhang W.D. Voltammetric Behavior of Rutin at a Vertically Aligned Multiwalled Carbon Nanotubes Electrode. Sens. Lett. 2013;11:321–327.

Karuwan C., Wisitsoraat A., Sappat A., Jaruwongrungsee K., Patthanasettakul V., Tuantranont A. Vertically Aligned Carbon Nanotube Based Electrochemcial Sensor for Salbutamol Detection. Sens. Lett. 2010;8:645–650.

Berti F., Lozzi L., Palchetti I., Santucci S., Marrazza G. Aligned carbon nanotube thin films for DNA electrochemical sensing. Electrochim. Acta. 2009;54:5035–5041.

Wang J.A., Zhang W.D. Sputtering deposition of gold nanoparticles onto vertically aligned carbon nanotubes for electroanalysis of uric acid. J. Electroanal. Chem. 2011;654:79–84.

Ye M.L., Xu B., Zhang W.D. Sputtering deposition of Pt nanoparticles on vertically aligned multiwalled carbon nanotubes for sensing L-cysteine. Microchim. Acta. 2011;172:439–446.

Feng X., Irle S., Witek H., Morokuma K., Vidic R., Borguet E. Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. J. Am. Chem. Soc. 2005;127:10533–10538. PubMed

Ndiaye A., Bonnet P., Pauly A., Dubois M., Brunet J., Varenne C., Guerin K., Lauron B. Noncovalent Functionalization of Single-Wall Carbon Nanotubes for the Elaboration of Gas Sensor Dedicated to BTX Type Gases: The Case of Toluene. J. Phys. Chem. C. 2013;117:20217–20228.

Datta K., Ghosh P., More M.A., Shirsat M.D., Mulchandani A. Controlled functionalization of single-walled carbon nanotubes for enhanced ammonia sensing: A comparative study. J. Phys. D Appl. Phys. 2012;45 doi: 10.1088/0022-3727/45/35/355305. DOI

Zhou Y., Jiang Y.D., Xie G.Z., Du X.S., Tai H.L. Gas sensors based on multiple-walled carbon nanotubes-polyethylene oxide films for toluene vapor detection. Sens. Actuators B: Chem. 2014;191:24–30.

Cava C.E., Salvatierra R.V., Alves D.C.B., Ferlauto A.S., Zarbin A.J.G., Roman L.S. Self-assembled films of multi-wall carbon nanotubes used in gas sensors to increase the sensitivity limit for oxygen detection. Carbon. 2012;50:1953–1958.

Ahn K.S., Kim J.H., Lee K.N., Kim C.O., Hong J.P. Multi-wall carbon nanotubes as a high-efficiency gas sensor. J. Korean Phys. Soc. 2004;45:158–161.

Cui S.M., Pu H.H., Lu G.H., Wen Z.H., Mattson E.C., Hirschmugl C., Gajdardziska-Josifovska M., Weinert M., Chen J.H. Fast and Selective Room-Temperature Ammonia Sensors Using Silver Nanocrystal-Functionalized Carbon Nanotubes. ACS Appl. Mater. Int. 2012;4:4898–4904. PubMed

Tang Y., Zhang Q.H., Li Y.G., Wang H.Z. Highly selective ammonia sensors based on Co1−xNixFe2O4/multi-walled carbon nanotubes nanocomposites. Sens. Actuators B Chem. 2012;169:229–234.

Varghese O.K., Kichambre P.D., Gong D., Ong K.G., Dickey E.C., Grimes C.A. Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators B Chem. 2001;81:32–41.

Wilfert S., Edelmann C. Field emitter-based vacuum sensors. Vacuum. 2012;86:556–571.

Bonard J.M., Maier F., Stockli T., Chatelain A., de Heer W.A., Salvetat J.P., Forro L. Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy. 1998;73:7–15.

Guo P.S., Chen T., Chen Y.W., Zhang Z.J., Feng T., Wang L.L., Lin L.F., Sun Z., Zheng Z.H. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters. Solid State Electron. 2008;52:877–881.

Nakahara H., Kusano Y., Kono T., Saito Y. Evaluations of carbon nanotube field emitters for electron microscopy. Appl. Surf. Sci. 2009;256:1214–1217.

Zajíčková L., Eliáš M., Jašek O., Kudrle V., Frgala Z., Matějková J., Buršík J., Kadlečíková M. Atmospheric pressure microwave torch for synthesis of carbon nanotubes. Plasma Phys. Control. Fusion. 2005;47:B655–B666.

Jašek O., Eliáš M., Zajíčková L., Kudrle V., Bublan M., Matějková J., Rek A., Buršík J., Kadlečíková M. Carbon nanotubes synthesis in microwave plasma torch at atmospheric pressure. Mater. Sci. Eng. C. 2006;26:1189–1193.

Jašek O., Eliáš M., Zajíčková L., Kučerová Z., Matějková J., Rek A., Buršík J. Discussion of important factors in deposition of carbon nanotubes by atmospheric pressure microwave plasma torch. J. Phys. Chem. Solids. 2007;68:738–743.

Zajíčková L., Eliáš M., Jašek O., Kučerová Z., Synek P., Matějková J., Kadlečíková M., Klementová M., Buršík J., Vojáčková A. Characterization of Carbon Nanotubes Deposited in Microwave Torch at Atmospheric Pressure. Plasma Process. Polym. 2007;4:S245–S249.

Zajíčková L., Synek P., Jašek O., Eliáš M., David B., Buršík J., Pizurová N., Hanzlíková R., Lazar L. Synthesis of carbon nanotubes and iron oxide nanoparticles in MW plasma torch with Fe(CO)5 in gas feed. Appl. Surf. Sci. 2009;255:5421–5424.

Pekárek J., Vrba R., Prášek J., Jašek O., Majzlíková P., Pekárková J., Zajíčková L. MEMS Carbon Nanotubes Field Emission Pressure Sensor with Simplified Design: Performance and Field Emission Properties Study. IEEE Sens. J. 2015;15:1430–1436.

Synek P., Jašek O., Zajíčková L., David B., Kudrle V., Pizurová N. Plasmachemical synthesis of maghemite nanoparticles in atmospheric pressure microwave torch. Mater. Lett. 2011;65:982–984.

Synek P., Jašek O., Zajíčková L. Study of Microwave Torch Plasmachemical Synthesis of Iron Oxide Nanoparticles Focused on the Analysis of Phase Composition. Plasma Chem. Plasma Process. 2014;34:327–341.

Bhan R.K., Saxena R.S., Jalwania C.R., Lomash S.K. Uncooled Infrared Microbolometer Arrays and their Characterisation Techniques. Def. Sci. J. 2009;59:580–589.

Majzlíková P., Prášek J., Eliáš M., Jašek O., Pekárek J., Hubálek J., Zajíčková L. Comparison of different modifications of screen-printed working electrodes of electrochemical sensors using carbon nanotubes and plasma treatment. Phys. Status Solidi. 2014;211:2756–2764.

Hoa N.D., van Quy N., Cho Y., Kim D. An ammonia gas sensor based on non-catalytically synthesized carbon nanotubes on an anodic aluminum oxide template. Sens. Actuators B Chem. 2007;127:447–454.

Sidek R.M., Yusof F.A.M., Yasin F.M., Wagiran R., Ahmadun F. Electrical response of multi-walled carbon nanotubes to ammonia and carbon dioxide. Proceedings of the 2010 IEEE International Conference on Semiconductor Electronics (ICSE); Melaka, Malaysia. 28–30 June 2010; pp. 263–266.

Firouzi A., Sobri S., Yasin F.M., Ahmadun F. Synthesis of Carbon Nanotubes by Chemical Vapor Deposition and their Application for CO2 and CH4 Detection. Proceedings of the 2010 International Conference on Nanotechnology and Biosensors; Hong Kong, China. 28–30 December 2011; pp. 169–172.

Han J.W., Kim B., Li J., Meyyappan M. A carbon nanotube based ammonia sensor on cellulose paper. RSC Adv. 2014;4:549–553.

Vikramaditya T., Sumithra K. Effect of Substitutionally Boron-Doped Single-Walled Semiconducting Zigzag Carbon Nanotubes on Ammonia Adsorption. J. Comput. Chem. 2014;35:586–594. PubMed

Teerapanich P., Myint M.T.Z., Joseph C.M., Hornyak G.L., Dutta J. Development and Improvement of Carbon Nanotube-Based Ammonia Gas Sensors Using Ink-Jet Printed Interdigitated Electrodes. IEEE Trans. Nanotechnol. 2013;12:255–262.

Van Hieu N., Dung N.Q., Tam P.D., Trung T., Chien N.D. Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature. Sens. Actuators B Chem. 2009;140:500–507.

Cheng C.Y., Nakashima M., Teii K. Low threshold field emission from nanocrystalline diamond/carbon nanowall composite films. Diam. Relat. Mater. 2012;27–28:40–44.

Obraztsov A.N., Zakhidov A.A., Volkov A.P., Lyashenko D.A. Non-classical electron field emission from carbon materials. Diam. Relat. Mater. 2003;12:446–449.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material

. 2017 Feb 09 ; 17 (2) : . [epub] 20170209

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...