Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
28208762
PubMed Central
PMC5336062
DOI
10.3390/s17020320
PII: s17020320
Knihovny.cz E-resources
- Keywords
- ammonia, chemiresistive gas sensor, graphite oxide, sensitivity,
- Publication type
- Journal Article MeSH
Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10-1000 ppm) and under different relative humidity levels (3%-65%). It was concluded that the graphite oxide-based sensor possessed a good response to NH₃ in dry synthetic air (ΔR/R₀ ranged from 2.5% to 7.4% for concentrations of 100-500 ppm and 3% relative humidity) with negligible cross-sensitivity towards H₂ and CH₄. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.
See more in PubMed
Nguyen H.-Q., Huh J.-S. Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation. Sens. Actuators B Chem. 2006;117:426–430. doi: 10.1016/j.snb.2005.11.056. DOI
Travlou N.A., Seredych M., Rodríguez-Castellón E., Bandosz T.J. Activated carbon-based gas sensors: Effects of surface features on the sensing mechanism. J. Mater. Chem. A. 2015;3:3821–3831. doi: 10.1039/C4TA06161F. DOI
Gedam N.N., Padole P.R., Rithe S.K., Chaudhari G.N. Ammonia gas sensor based on a spinel semiconductor, Co0.8Ni0.2Fe2O4 nanomaterial. J. Sol-Gel Sci. Technol. 2009;50:296–300. doi: 10.1007/s10971-009-1942-1. DOI
Wang Y., Wu X., Su Q., Li Y., Zhou Z. Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials. Solid-State Electron. 2001;45:347–350. doi: 10.1016/S0038-1101(00)00231-8. DOI
Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI
Petit C., Seredych M., Bandosz T.J. Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 2009;19:9176. doi: 10.1039/b916672f. DOI
Brodie B.C. On the Atomic Weight of Graphite. Philos. Trans. R. Soc. Lond. 1859;149:249–259. doi: 10.1098/rstl.1859.0013. DOI
Staudenmaier L. Verfahren zur Darstellung der Graphitsaure. Ber. Dtsch. Chem. Ges. 1898;31:1481–1487. doi: 10.1002/cber.18980310237. DOI
Hummers W.S.J., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Tran Q.T., Huynh T.M.H., Tong D.T., Tran V.T., Nguyen N.D. Synthesis and application of graphene–silver nanowires composite for ammonia gas sensing. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4:45012. doi: 10.1088/2043-6262/4/4/045012. DOI
Zhang J., Zhang R., Wang X., Feng W., Hu P., O’Neill W., Wang Z. Fabrication of highly oriented reduced graphene oxide microbelts array for massive production of sensitive ammonia gas sensors. J. Micromech. Microeng. 2013;23:95031. doi: 10.1088/0960-1317/23/9/095031. DOI
Seredych M., Tamashausky A.V., Bandosz T.J. Graphite oxides obtained from porous graphite: The role of surface chemistry and texture in ammonia retention at ambient conditions. Adv. Funct. Mater. 2010;20:1670–1679. doi: 10.1002/adfm.201000061. DOI
Seredych M., Bandosz T.J. Combined role of water and surface chemistry in reactive adsorption of ammonia on graphite oxides. Langmuir. 2010;26:5491–5498. doi: 10.1021/la9037217. PubMed DOI
Li X., Chen X., Yao Y., Li N., Chen X. High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer. Sens. Actuators B Chem. 2014;196:183–188. doi: 10.1016/j.snb.2014.01.088. DOI
Wang Y., Zhang L., Hu N., Wang Y., Zhang Y., Zhou Z., Liu Y., Shen S., Peng C. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Res. Lett. 2014;9:251. doi: 10.1186/1556-276X-9-251. PubMed DOI PMC
Yang J., Gunasekaran S. Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon. 2013;51:36–44. doi: 10.1016/j.carbon.2012.08.003. DOI
Zhang D., Liu J., Jiang C., Liu A., Xia B. Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuators B Chem. 2017;240:55–65. doi: 10.1016/j.snb.2016.08.085. DOI
Andre R.S., Shimizu F.M., Miyazaki C.M., Riul A., Manzani D., Ribeiro S.J.L., Oliveira O.N., Mattoso L.H.C., Correa D.S. Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sens. Actuators B Chem. 2017;238:795–801. doi: 10.1016/j.snb.2016.07.099. DOI
Travlou N.A., Singh K., Rodríguez-Castellón E., Bandosz T.J. Cu–BTC MOF–graphene-based hybrid materials as low concentration ammonia sensors. J. Mater. Chem. A. 2015;2:2445–2460. doi: 10.1039/C5TA01738F. DOI
Katkov M.V., Sysoev V.I., Gusel’nikov A.V., Asanov I.P., Bulusheva L.G., Okotrub A.V. A backside fluorine-functionalized graphene layer for ammonia detection. Phys. Chem. Chem. Phys. 2014;17:444–450. doi: 10.1039/C4CP03552F. PubMed DOI
Poh H.L., Šimek P., Sofer Z., Pumera M. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano. 2013;7:5262–5272. doi: 10.1021/nn401296b. PubMed DOI
Bourlinos A.B., Gournis D., Petridis D., Szabo T., Szeri A., Dékány I. Graphite Oxide : Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir. 2003;19:6050–6055. doi: 10.1021/la026525h. DOI
Zhang H.-B., Wang J.-W., Yan Q., Zheng W.-G., Chen C., Yu Z.-Z. Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide. J. Mater. Chem. 2011;21:5392. doi: 10.1039/c1jm10099h. DOI
Basu S., Bhattacharyya P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B Chem. 2012;173:1–21. doi: 10.1016/j.snb.2012.07.092. DOI
Hu N., Yang Z., Wang Y.Y., Zhang L., Wang Y.Y., Huang X., Wei H., Wei L., Zhang Y. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology. 2014;25:25502. doi: 10.1088/0957-4484/25/2/025502. PubMed DOI
Bannov A.G., Timofeeva A.A., Shinkarev V.V., Dyukova K.D., Ukhina A.V., Maksimovskii E.A., Yusin S.I. Synthesis and studies of properties of graphite oxide and thermally expanded graphite. Prot. Met. Phys. Chem. Surf. 2014;50:183–190. doi: 10.1134/S207020511402004X. DOI
Zhao Q., Cheng X., Wu J., Yu X. Sulfur-free exfoliated graphite with large exfoliated volume: Preparation, characterization and its adsorption performance. J. Ind. Eng. Chem. 2014;20:4028–4032. doi: 10.1016/j.jiec.2014.01.002. DOI
Yuan B., Song L., Liew K.M., Hu Y. Mechanism for increased thermal instability and fire risk of graphite oxide containing metal salts. Mater. Lett. 2016;167:197–200. doi: 10.1016/j.matlet.2015.12.153. DOI
Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI
Gurzęda B., Florczak P., Kempiński M., Peplińska B., Krawczyk P., Jurga S. Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid. Carbon. 2016;100:540–545. doi: 10.1016/j.carbon.2016.01.044. DOI
Gao W., Majumder M., Alemany L.B., Narayanan T.N., Ibarra M.A., Pradhan B.K., Ajayan P.M. Engineered graphite oxide materials for application in water purification. ACS Appl. Mater. Interfaces. 2011;3:1821–1826. doi: 10.1021/am200300u. PubMed DOI
Han J.-W., Kim B., Li J., Meyyappan M. A carbon nanotube based ammonia sensor on cellulose paper. RSC Adv. 2014;4:549. doi: 10.1039/C3RA46347H. DOI
Kim T., Kim S., Min N., Pak J.J., Lee C., Kim S. NH3 Sensitive Chemiresistor Sensors Using Plasma Functionalized Multiwall Carbon Nanotubes/Conducting Polymer Composites; Proceedings of the 2008 IEEE Sensors; Lecce, Italy. 26–29 October 2008; pp. 208–211.
Ghosh R., Midya A., Santra S., Ray S.K., Guha P.K. Chemically reduced graphene oxide for ammonia detection at room temperature. ACS Appl. Mater. Interfaces. 2013;5:7599–7603. doi: 10.1021/am4019109. PubMed DOI
Travlou N.A., Rodríguez-castell E. Sensing of NH3 on heterogeneous nanoporous carbons in the presence of humidity. Carbon. 2016;100:64–73. doi: 10.1016/j.carbon.2015.12.091. DOI
Bekyarova E., Davis M., Burch T., Itkis M.E., Zhao B., Sunshine S., Haddon R.C. Chemically Functionalized Single-Walled Carbon Nanotubes as Ammonia Sensors. J. Phys. Chem. B. 2004;108:19717–19720. doi: 10.1021/jp0471857. DOI
Zhang T., Mubeen S., Bekyarova E., Yoo B.Y., Haddon R.C., Myung N.V., Deshusses M. A Poly(m-aminobenzene sulfonic acid) functionalized single-walled carbon nanotubes based gas sensor. Nanotechnology. 2007;18:165504. doi: 10.1088/0957-4484/18/16/165504. DOI
Meyyappan M. Carbon Nanotube-Based Chemical Sensors. Small. 2016;12:2118–2129. doi: 10.1002/smll.201502555. PubMed DOI
Gautam M., Jayatissa A.H. Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid State Electron. 2012;78:159–165. doi: 10.1016/j.sse.2012.05.059. DOI
Timmer B., Olthuis W., Van Den Berg A. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005;107:666–677. doi: 10.1016/j.snb.2004.11.054. DOI
Teerapanich P., Myint M.T.Z., Joseph C.M., Hornyak G.L., Dutta J. Development and Improvement of Carbon Nanotube-Based Ammonia Gas Sensors Using Ink-Jet Printed Interdigitated Electrodes. IEEE Trans. Nanotechnol. 2013;12:255–262. doi: 10.1109/TNANO.2013.2242203. DOI
Majzlíková P., Sedláček J., Prášek J., Pekárek J., Svatoš V., Bannov A.G., Jašek O., Synek P., Eliáš M., Zajíčková L., et al. Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption. Sensors. 2015;15:2644–2661. doi: 10.3390/s150202644. PubMed DOI PMC
Song H., Li X., Cui P., Guo S., Liu W., Wang X. Morphology optimization of CVD graphene decorated with Ag nanoparticles as ammonia sensor. Sens. Actuators B Chem. 2017;244:124–130. doi: 10.1016/j.snb.2016.12.133. DOI
Li X., Zhao Y., Wang X., Wang J., Gaskov A.M., Akbar S.A. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuators B Chem. 2016;230:330–336. doi: 10.1016/j.snb.2016.02.069. DOI