• This record comes from PubMed

Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material

. 2017 Feb 09 ; 17 (2) : . [epub] 20170209

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10-1000 ppm) and under different relative humidity levels (3%-65%). It was concluded that the graphite oxide-based sensor possessed a good response to NH₃ in dry synthetic air (ΔR/R₀ ranged from 2.5% to 7.4% for concentrations of 100-500 ppm and 3% relative humidity) with negligible cross-sensitivity towards H₂ and CH₄. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.

See more in PubMed

Nguyen H.-Q., Huh J.-S. Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation. Sens. Actuators B Chem. 2006;117:426–430. doi: 10.1016/j.snb.2005.11.056. DOI

Travlou N.A., Seredych M., Rodríguez-Castellón E., Bandosz T.J. Activated carbon-based gas sensors: Effects of surface features on the sensing mechanism. J. Mater. Chem. A. 2015;3:3821–3831. doi: 10.1039/C4TA06161F. DOI

Gedam N.N., Padole P.R., Rithe S.K., Chaudhari G.N. Ammonia gas sensor based on a spinel semiconductor, Co0.8Ni0.2Fe2O4 nanomaterial. J. Sol-Gel Sci. Technol. 2009;50:296–300. doi: 10.1007/s10971-009-1942-1. DOI

Wang Y., Wu X., Su Q., Li Y., Zhou Z. Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials. Solid-State Electron. 2001;45:347–350. doi: 10.1016/S0038-1101(00)00231-8. DOI

Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI

Petit C., Seredych M., Bandosz T.J. Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 2009;19:9176. doi: 10.1039/b916672f. DOI

Brodie B.C. On the Atomic Weight of Graphite. Philos. Trans. R. Soc. Lond. 1859;149:249–259. doi: 10.1098/rstl.1859.0013. DOI

Staudenmaier L. Verfahren zur Darstellung der Graphitsaure. Ber. Dtsch. Chem. Ges. 1898;31:1481–1487. doi: 10.1002/cber.18980310237. DOI

Hummers W.S.J., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Tran Q.T., Huynh T.M.H., Tong D.T., Tran V.T., Nguyen N.D. Synthesis and application of graphene–silver nanowires composite for ammonia gas sensing. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4:45012. doi: 10.1088/2043-6262/4/4/045012. DOI

Zhang J., Zhang R., Wang X., Feng W., Hu P., O’Neill W., Wang Z. Fabrication of highly oriented reduced graphene oxide microbelts array for massive production of sensitive ammonia gas sensors. J. Micromech. Microeng. 2013;23:95031. doi: 10.1088/0960-1317/23/9/095031. DOI

Seredych M., Tamashausky A.V., Bandosz T.J. Graphite oxides obtained from porous graphite: The role of surface chemistry and texture in ammonia retention at ambient conditions. Adv. Funct. Mater. 2010;20:1670–1679. doi: 10.1002/adfm.201000061. DOI

Seredych M., Bandosz T.J. Combined role of water and surface chemistry in reactive adsorption of ammonia on graphite oxides. Langmuir. 2010;26:5491–5498. doi: 10.1021/la9037217. PubMed DOI

Li X., Chen X., Yao Y., Li N., Chen X. High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer. Sens. Actuators B Chem. 2014;196:183–188. doi: 10.1016/j.snb.2014.01.088. DOI

Wang Y., Zhang L., Hu N., Wang Y., Zhang Y., Zhou Z., Liu Y., Shen S., Peng C. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Res. Lett. 2014;9:251. doi: 10.1186/1556-276X-9-251. PubMed DOI PMC

Yang J., Gunasekaran S. Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon. 2013;51:36–44. doi: 10.1016/j.carbon.2012.08.003. DOI

Zhang D., Liu J., Jiang C., Liu A., Xia B. Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuators B Chem. 2017;240:55–65. doi: 10.1016/j.snb.2016.08.085. DOI

Andre R.S., Shimizu F.M., Miyazaki C.M., Riul A., Manzani D., Ribeiro S.J.L., Oliveira O.N., Mattoso L.H.C., Correa D.S. Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sens. Actuators B Chem. 2017;238:795–801. doi: 10.1016/j.snb.2016.07.099. DOI

Travlou N.A., Singh K., Rodríguez-Castellón E., Bandosz T.J. Cu–BTC MOF–graphene-based hybrid materials as low concentration ammonia sensors. J. Mater. Chem. A. 2015;2:2445–2460. doi: 10.1039/C5TA01738F. DOI

Katkov M.V., Sysoev V.I., Gusel’nikov A.V., Asanov I.P., Bulusheva L.G., Okotrub A.V. A backside fluorine-functionalized graphene layer for ammonia detection. Phys. Chem. Chem. Phys. 2014;17:444–450. doi: 10.1039/C4CP03552F. PubMed DOI

Poh H.L., Šimek P., Sofer Z., Pumera M. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano. 2013;7:5262–5272. doi: 10.1021/nn401296b. PubMed DOI

Bourlinos A.B., Gournis D., Petridis D., Szabo T., Szeri A., Dékány I. Graphite Oxide : Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir. 2003;19:6050–6055. doi: 10.1021/la026525h. DOI

Zhang H.-B., Wang J.-W., Yan Q., Zheng W.-G., Chen C., Yu Z.-Z. Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide. J. Mater. Chem. 2011;21:5392. doi: 10.1039/c1jm10099h. DOI

Basu S., Bhattacharyya P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B Chem. 2012;173:1–21. doi: 10.1016/j.snb.2012.07.092. DOI

Hu N., Yang Z., Wang Y.Y., Zhang L., Wang Y.Y., Huang X., Wei H., Wei L., Zhang Y. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology. 2014;25:25502. doi: 10.1088/0957-4484/25/2/025502. PubMed DOI

Bannov A.G., Timofeeva A.A., Shinkarev V.V., Dyukova K.D., Ukhina A.V., Maksimovskii E.A., Yusin S.I. Synthesis and studies of properties of graphite oxide and thermally expanded graphite. Prot. Met. Phys. Chem. Surf. 2014;50:183–190. doi: 10.1134/S207020511402004X. DOI

Zhao Q., Cheng X., Wu J., Yu X. Sulfur-free exfoliated graphite with large exfoliated volume: Preparation, characterization and its adsorption performance. J. Ind. Eng. Chem. 2014;20:4028–4032. doi: 10.1016/j.jiec.2014.01.002. DOI

Yuan B., Song L., Liew K.M., Hu Y. Mechanism for increased thermal instability and fire risk of graphite oxide containing metal salts. Mater. Lett. 2016;167:197–200. doi: 10.1016/j.matlet.2015.12.153. DOI

Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI

Gurzęda B., Florczak P., Kempiński M., Peplińska B., Krawczyk P., Jurga S. Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid. Carbon. 2016;100:540–545. doi: 10.1016/j.carbon.2016.01.044. DOI

Gao W., Majumder M., Alemany L.B., Narayanan T.N., Ibarra M.A., Pradhan B.K., Ajayan P.M. Engineered graphite oxide materials for application in water purification. ACS Appl. Mater. Interfaces. 2011;3:1821–1826. doi: 10.1021/am200300u. PubMed DOI

Han J.-W., Kim B., Li J., Meyyappan M. A carbon nanotube based ammonia sensor on cellulose paper. RSC Adv. 2014;4:549. doi: 10.1039/C3RA46347H. DOI

Kim T., Kim S., Min N., Pak J.J., Lee C., Kim S. NH3 Sensitive Chemiresistor Sensors Using Plasma Functionalized Multiwall Carbon Nanotubes/Conducting Polymer Composites; Proceedings of the 2008 IEEE Sensors; Lecce, Italy. 26–29 October 2008; pp. 208–211.

Ghosh R., Midya A., Santra S., Ray S.K., Guha P.K. Chemically reduced graphene oxide for ammonia detection at room temperature. ACS Appl. Mater. Interfaces. 2013;5:7599–7603. doi: 10.1021/am4019109. PubMed DOI

Travlou N.A., Rodríguez-castell E. Sensing of NH3 on heterogeneous nanoporous carbons in the presence of humidity. Carbon. 2016;100:64–73. doi: 10.1016/j.carbon.2015.12.091. DOI

Bekyarova E., Davis M., Burch T., Itkis M.E., Zhao B., Sunshine S., Haddon R.C. Chemically Functionalized Single-Walled Carbon Nanotubes as Ammonia Sensors. J. Phys. Chem. B. 2004;108:19717–19720. doi: 10.1021/jp0471857. DOI

Zhang T., Mubeen S., Bekyarova E., Yoo B.Y., Haddon R.C., Myung N.V., Deshusses M. A Poly(m-aminobenzene sulfonic acid) functionalized single-walled carbon nanotubes based gas sensor. Nanotechnology. 2007;18:165504. doi: 10.1088/0957-4484/18/16/165504. DOI

Meyyappan M. Carbon Nanotube-Based Chemical Sensors. Small. 2016;12:2118–2129. doi: 10.1002/smll.201502555. PubMed DOI

Gautam M., Jayatissa A.H. Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid State Electron. 2012;78:159–165. doi: 10.1016/j.sse.2012.05.059. DOI

Timmer B., Olthuis W., Van Den Berg A. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005;107:666–677. doi: 10.1016/j.snb.2004.11.054. DOI

Teerapanich P., Myint M.T.Z., Joseph C.M., Hornyak G.L., Dutta J. Development and Improvement of Carbon Nanotube-Based Ammonia Gas Sensors Using Ink-Jet Printed Interdigitated Electrodes. IEEE Trans. Nanotechnol. 2013;12:255–262. doi: 10.1109/TNANO.2013.2242203. DOI

Majzlíková P., Sedláček J., Prášek J., Pekárek J., Svatoš V., Bannov A.G., Jašek O., Synek P., Eliáš M., Zajíčková L., et al. Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption. Sensors. 2015;15:2644–2661. doi: 10.3390/s150202644. PubMed DOI PMC

Song H., Li X., Cui P., Guo S., Liu W., Wang X. Morphology optimization of CVD graphene decorated with Ag nanoparticles as ammonia sensor. Sens. Actuators B Chem. 2017;244:124–130. doi: 10.1016/j.snb.2016.12.133. DOI

Li X., Zhao Y., Wang X., Wang J., Gaskov A.M., Akbar S.A. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuators B Chem. 2016;230:330–336. doi: 10.1016/j.snb.2016.02.069. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...