Transstadial transmission of Borrelia turcica in Hyalomma aegyptium ticks
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25695663
PubMed Central
PMC4335052
DOI
10.1371/journal.pone.0115520
PII: PONE-D-14-36701
Knihovny.cz E-zdroje
- MeSH
- Borrelia patogenita MeSH
- infekce bakteriemi rodu Borrelia přenos MeSH
- Ixodidae parazitologie patogenita MeSH
- klíšťata MeSH
- želvy parazitologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Borrelia turcica comprises the third major group of arthropod-transmitted borreliae and is phylogenetically divergent from other Borrelia groups. The novel group of Borrelia was initially isolated from Hyalomma aegyptium ticks in Turkey and it was recently found in blood and multiple organs of tortoises exported from Jordan to Japan. However, the ecology of these spirochetes and their development in ticks or the vertebrate hosts were not investigated in detail; our aims were to isolate the pathogen and to evaluate the possibility of transstadial transmission of Borrelia turcica by H. aegyptium ticks. Ticks were collected from Testudo graeca tortoises during the summer of 2013 from southeastern Romania. Engorged nymphs were successfully molted to the adult stage. Alive B. turcica was isolated from molted ticks by using Barbour-Stoenner-Kelly (BSK) II medium. Four pure cultures of spirochetes were obtained and analyzed by PCR and sequencing. Sequence analysis of glpQ, gyrB and flaB revealed 98%-100% similarities with B. turcica. H. aegyptium ticks collected from T. graeca tortoises were able to pass the infection with B. turcica via transstadial route, suggesting its vectorial capacity.
Zobrazit více v PubMed
Orkun Ö, Karaer Z, Çakmak A, Nalbantoğlu S (2014) Identification of tick-borne pathogens in ticks feeding on humans in Turkey. PLoS Negl Trop Dis 8: e3067 10.1371/journal.pntd.0003067 PubMed DOI PMC
Rar VA, Fomenko NV, Dobrotvorsky AK, Livanova NN, Rudakova SA, et al. (2005) Tickborne pathogen detection, Western Siberia, Russia. Emerg Infect Dis 11: 1708–1715. PubMed PMC
Dantas-Torres F, Chomel BB, Otranto D (2012) Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol 28: 437–446. 10.1016/j.pt.2012.07.003 PubMed DOI
Takano A, Sugimori C, Fujita H, Kadosaka T, Taylor KR, et al. (2012) A novel relapsing fever Borrelia sp. infects the salivary glands of the molted hard tick, Amblyomma geoemydae . Ticks Tick Borne Dis 3: 259–261. 10.1016/j.ttbdis.2012.06.003 PubMed DOI
Franke J, Hildebrandt A, Dorn W (2013) Exploring gaps in our knowledge on Lyme borreliosis spirochaetes—updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis 4: 11–25. 10.1016/j.ttbdis.2012.06.007 PubMed DOI
Gern L, Humair PF (1998) Natural history of Borrelia burgdorferi sensu lato. Wien Klin Wochenschr 110: 856–858. PubMed
Stanek G, Reiter M (2011) The expanding Lyme Borrelia complex—clinical significance of genomic species? Clin Microbiol Infect 17: 487–493. 10.1111/j.1469-0691.2011.03492.x PubMed DOI
Barbour AG, Putteet-Driver AD, Bunikis J (2005) Horizontally acquired genes for purine salvage in Borrelia spp. causing relapsing fever. Infect Immun 73: 6165–6168. PubMed PMC
Banerjee SN, Banerjee M, Fernando K, Burgdorfer W, Schwan TG (1998) Tick-borne relapsing fever in British Columbia, Canada: first isolation of Borrelia hermsii . J Clin Microbiol 36: 3505–3508. PubMed PMC
van Dam AP, van Gool T, Wetsteyn JC, Dankert J (1999) Tick-borne relapsing fever imported from West Africa: diagnosis by quantitative buffy coat analysis and in vitro culture of Borrelia crocidurae . J Clin Microbiol 37: 2027–2030. PubMed PMC
Elbir H, Raoult D, Drancourt M (2013) Relapsing fever borreliae in Africa. Am J Trop Med Hyg 89: 288–292. 10.4269/ajtmh.12-0691 PubMed DOI PMC
Al-Gwaiz LA, Al-Mashhadani SA, Ayoola EA, Al-Khairy KS, Higgy KG, et al. (1995) Relapsing fever in Saudi Arabia: Report of two cases. Ann Saudi Med 15: 165–167. PubMed
Dupont HT, La Scola B, Williams R, Raoult D (1997) A focus of tick-borne relapsing fever in southern Zaire. Clin Infect Dis 25: 139–144. PubMed
Rizzoli A, Hauffe H, Carpi G, Vourc HG, Neteler M, et al. (2011) Lyme borreliosis in Europe. Euro Surveill 7: 16. PubMed
Richter D, Schlee DB, Matuschka FR (2003) Relapsing fever-like spirochetes infecting European vector tick of Lyme disease agent. Emerg Infect Dis 9: 697–701. PubMed PMC
Masuzawa T (2004) Terrestrial distribution of the Lyme borreliosis agent Borrelia burgdorferi sensu lato in East Asia. Jpn J Infect Dis 57: 229–235. PubMed
Burridge MJ (2011) Invasive species In: Non-native and invasive ticks. Threats to human and animal health in the United States. University press of Florida; pp. 4–14.
Burridge MJ, Simmons LA, Allan SA (2000) Introduction of potential heart water vectors and other exotic ticks into Florida on imported reptiles. J Parasitol 86: 700–704. PubMed
Burridge MJ, Simmons LA (2003) Exotic ticks introduced into the United States on imported reptiles from 1962 to 2001 and their potential roles in international dissemination of diseases. Vet Parasitol 113: 289–320. PubMed
Paperna I, Kremer-Mecabell T, Finkelman S (2002) Hepatozoon kisrae sp. infecting the lizard Agama stellio is transmitted by the tick Hyalomma cf. aegyptium . Parasite 9: 17–27. PubMed
Güner ES, Watanabe M, Hashimoto N, Kadosaka T, Kawamura Y, et al. (2004) Borrelia turcica sp. nov., isolated from the hard tick Hyalomma aegyptium in Turkey. Int J Syst Evol Microbiol 54: 1649–1652. PubMed
Bitam I, Kernif T, Harrat Z, Parola P, Raoult D (2009) First detection of Rickettsia aeschlimannii in Hyalomma aegyptium from Algeria. Clin Microbiol Infec 2: 253–254. 10.1111/j.1469-0691.2008.02274.x PubMed DOI
Takano A, Goka K, Une Y, Shimada Y, Fujita H, et al. (2010) Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Environ Microbiol 12: 134–146. 10.1111/j.1462-2920.2009.02054.x PubMed DOI
Harris DJ, Maia JP, Perera A (2011) Molecular characterization of Hepatozoon species in reptiles from the Seychelles. J Parasitol 97: 106–110. 10.1645/GE-2470.1 PubMed DOI
Paștiu AI, Matei IA, Mihalca AD, D’Amico G, Dumitrache MO, et al. (2012) Zoonotic pathogens associated with Hyalomma aegyptium in endangered tortoises: evidence for host-switching behaviour in ticks? Parasit Vectors 5:301 10.1186/1756-3305-5-301 PubMed DOI PMC
Güner ES, Hashimoto N, Takada N, Kaneda K, Imai Y, et al. (2003) First isolation and characterization of Borrelia burgdorferi sensu lato strains from Ixodes ricinus ticks in Turkey. J Med Microbiol 52: 807–813. PubMed
Takano A, Fujita H, Kadosaka T, Konnai S, Tajima T, Watanabe H, Ohnishi M, Kawabata H (2011) Characterization of reptile-associated Borrelia sp. in the vector tick, Amblyomma geoemydae, and its association with Lyme disease and relapsing fever Borrelia spp. Environ Microbiol Rep 3: 632–637. 10.1111/j.1758-2229.2011.00280.x PubMed DOI
Adeolu M, Gupta RS (2014) A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Anton Leeuw 105: 1049–1072. PubMed
Schwan TG, Anderson JM, Lopez JE, Fischer RJ, Raffel SJ, et al. (2012) Endemic foci of the tick-borne relapsing fever spirochete Borrelia crocidurae in Mali, West Africa, and the potentialfor human infection. PLoS Negl Trop Dis 6: e1924 10.1371/journal.pntd.0001924 PubMed DOI PMC
Cutler SJ (2006) Possibilities for relapsing fever reemergence. Emerg Infect Dis 12: 369–374. PubMed PMC
Ray HN (1950) Hereditary transmission of Theileria annulata infection in the tick, Hyalomma aegyptium Neum. Trans R Soc Trop Med Hyg 44: 93–104. PubMed
Kar S, Yılmazer N, Midilli K, Ergin S, Alp H, et al. (2011) Presence of the zoonotic Borrelia burgdorferi s.l. and Rickettsia spp. in the ticks from wild tortoises and hedgehogs. J Marmara Univ Inst Health Sci 1: 166–170.
Široký P, Mikulícek P, Jandzík D, Kami H, Mihalca AD, et al.(2009) Co-distribution pattern of a haemogregarine Hemolivia mauritanica (Apicomplexa: Haemogregarinidae) and its vector Hyalomma aegyptium(Metastigmata:Ixodidae). J Parasitol 95: 728–733. 10.1645/GE-1842.1 PubMed DOI
Široký P, Kubelová M, Modrý D, Erhart J, Literák I, et al. (2010) Tortoise tick Hyalomma aegyptium as long term carrier of Q fever agent Coxiella burnetii—evidence from experimental infection. Parasitol Res 107: 1515–1520. 10.1007/s00436-010-2037-1 PubMed DOI
Široký P, Bělohlávek T, Papoušek I, Jandzik D, Mikulíček P, et al. (2014) Hidden threat of tortoise ticks: high prevalence of Crimean-Congo haemorrhagic fever virus in ticks Hyalomma aegyptium in the Middle East. Parasit Vectors 11: 101. PubMed PMC
Vatansever Z, Gargili A, Aysul NS, Sengoz G, Estrada-Peña A (2008) Ticks biting humans in the urban area of Istanbul. Parasitol Res 102: 551–553. PubMed
Bursali A, Tekin S, Orhan M, Keskin A, Ozkan M (2010) Ixodid ticks (Acari: Ixodidae) infesting humans in Tokat Province of Turkey: species diversity and seasonalactivity. J Vector Ecol 35: 180–186. 10.1111/j.1948-7134.2010.00045.x PubMed DOI
Kar S, Dervis E, Akın A, Ergonul O, Gargili A (2013) Preferences of different tick species for human hosts in Turkey. Exp Appl Acarol 61: 349–355. 10.1007/s10493-013-9698-2 PubMed DOI
Apanaskevich DA: Host–parasite relationships of the genus Hyalomma Koch (Acari, Ixodidae) and their connection with microevolutionary processes. Parazitologiya 2004, 38:515–523. in Russian PubMed
Siroký P,Erhart J, Petrželková KJ, Kamler M. (2011). Life cycle of tortoise tick Hyalomma aegyptium under laboratory conditions. Exp Appl Acarol 54: 277–284. 10.1007/s10493-011-9442-8 PubMed DOI
Sanders FH, Oliver JH (1995) Evaluation of Ixodes scapularis, Amblyomma americanum, and Dermacentor variabilis (Acari:Ixodidae) from Georgia as vectors of a Florida strain of the Lyme disease spirochete, Borrelia burgdorferi . J Med Entomol 32: 402–406. PubMed
Dolan MC, Maupin GO, Panella NA, Golde WT, Piesman J (1997) Vector competence of Ixodes scapularis , I. spinipalpis, and Dermacentor andersonii (Acari:Ixodidae) in transmitting Borrelia burgdorferi , the etiologic agent of Lyme disease. J Med Entomol 34: 128–135. PubMed
Eisen L, Lane RS (2002) Vectors of Borrelia burgdorferi sensu lato In: Lyme borreliosis: Biology, Epidemiology and Control. Gray J., Kahl O., Lane R.S. and Stanek G. (eds.). Wallingford, Oxfordshire: CABI Publishing; pp: 102–115.
Feider Z (1965) Fauna RPR. Arachnida In romanian. Bucureşti: Academiei RPR, vol V, fasc 2.
Postic D, Assous MV, Grimont PA, Baranton G (1994) Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf(5S)-rrl(23S) intergenic spacer amplicons. Int J Syst Bacteriol 44: 743–752. PubMed
Schwan TG, Raffael JS, Schrumpf ME, Policastro PF, Rawlings JA, et al. (2005) Phylogenetic analysis of the spirochetes Borrelia parkeri and Borrliea turicatae and the potential for tick-borne relapsing fever in Florida. J Clin Microbiol 43: 3851–3859. PubMed PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molec Biol Evol 30: 2725–2729. 10.1093/molbev/mst197 PubMed DOI PMC
Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molec Biol Evol 4:406–425. PubMed
Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791. PubMed
Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101:11030–11035. PubMed PMC
Kolonin GV (1983) Mirovoe rasprostranenie iksodovykh kleshchey Rody Hyalomma, Aponomma, Amblyomma [World distribution of ixodid ticks. Genera Hyalomma, Aponomma, Amblyomma]. In Russian. Moskva, SSSR: Nauka.
Mihalca AD, Dumitrache MO, Magdaş C, Gherman CM, Domşa C, et al. (2012) Synopsis of the hard ticks (Acari: Ixodidae) of Romania with update on host associations and geographical distribution. Exp Appl Acarol 58: 183–206. 10.1007/s10493-012-9566-5 PubMed DOI
Kalmár Z, D’Amico G, Matei IA, Paștiu AI, Mărcuţan DI, et al. (2014) Borrelia turcica in Hyalomma aegyptium ticks in Romania. Parasit Vectors 7(Suppl 1): P6 PubMed
Bacon RM, Pilgard MA, Johnson BJ, Raffel SJ, Schwan TG (2004) Glycerophosphodiester phosphodiesterase gene (glpQ) of Borrelia lonestari identified as a target for differentiating Borrelia species associated with hard ticks (Acari:Ixodidae). J Clin Microbiol 42: 2326–2328. PubMed PMC
Ticks and tick-borne pathogens in wild birds in Greece