SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
617844
European Research Council - International
105104
Wellcome Trust - United Kingdom
19310
Cancer Research UK - United Kingdom
G0701935/2
Medical Research Council - United Kingdom
17786
Cancer Research UK - United Kingdom
G0701935
Medical Research Council - United Kingdom
G0902275
Medical Research Council - United Kingdom
18377
Cancer Research UK - United Kingdom
10748
Cancer Research UK - United Kingdom
PubMed
25728682
PubMed Central
PMC4660036
DOI
10.1038/onc.2015.24
PII: onc201524
Knihovny.cz E-zdroje
- MeSH
- genetická heterogenita MeSH
- histonlysin-N-methyltransferasa genetika metabolismus MeSH
- histony metabolismus MeSH
- karcinom z renálních buněk genetika metabolismus MeSH
- lidé MeSH
- mikrosatelitní nestabilita MeSH
- mutace * MeSH
- nádorové buněčné linie MeSH
- nádory ledvin genetika metabolismus MeSH
- nukleozomy patologie MeSH
- oprava DNA MeSH
- replikace DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histonlysin-N-methyltransferasa MeSH
- histony MeSH
- nukleozomy MeSH
- SETD2 protein, human MeSH Prohlížeč
Defining mechanisms that generate intratumour heterogeneity and branched evolution may inspire novel therapeutic approaches to limit tumour diversity and adaptation. SETD2 (Su(var), Enhancer of zeste, Trithorax-domain containing 2) trimethylates histone-3 lysine-36 (H3K36me3) at sites of active transcription and is mutated in diverse tumour types, including clear cell renal carcinomas (ccRCCs). Distinct SETD2 mutations have been identified in spatially separated regions in ccRCC, indicative of intratumour heterogeneity. In this study, we have addressed the consequences of SETD2 loss-of-function through an integrated bioinformatics and functional genomics approach. We find that bi-allelic SETD2 aberrations are not associated with microsatellite instability in ccRCC. SETD2 depletion in ccRCC cells revealed aberrant and reduced nucleosome compaction and chromatin association of the key replication proteins minichromosome maintenance complex component (MCM7) and DNA polymerase δ hindering replication fork progression, and failure to load lens epithelium-derived growth factor and the Rad51 homologous recombination repair factor at DNA breaks. Consistent with these data, we observe chromosomal breakpoint locations are biased away from H3K36me3 sites in SETD2 wild-type ccRCCs relative to tumours with bi-allelic SETD2 aberrations and that H3K36me3-negative ccRCCs display elevated DNA damage in vivo. These data suggest a role for SETD2 in maintaining genome integrity through nucleosome stabilization, suppression of replication stress and the coordination of DNA repair.
Barts Cancer Institute Experimental Cancer Medicine Centre Queen Mary University of London London UK
Cancer Genome Project Wellcome Trust Sanger Institute Wellcome Trust Genome Campus Cambridgeshire UK
Cancer Research UK London Research Institute London UK
Children's Hospital Boston Informatics Enders 1506 Boston MA USA
Danish Cancer Society Research Center Copenhagen Denmark
Zobrazit více v PubMed
Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. N Engl J Med 1996; 335: 865–875. PubMed
Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463: 360–363. PubMed PMC
Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469: 539–542. PubMed PMC
Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al. Intratumour heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883–892. PubMed PMC
Guo G, Gui Y, Gao S, Tang A, Hu X, Huang Y et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 2012; 44: 17–19. PubMed
Larkin J, Goh XY, Vetter M, Pickering L, Swanton C. Epigenetic regulation in RCC: opportunities for therapeutic intervention? Nat Rev Urol 2012; 9: 147–155. PubMed
Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra RM et al. Histone methyltransferase gene SETD2 is a novel tumour suppressor gene in clear cell renal cell carcinoma. Cancer Res 2010; 70: 4287–4291. PubMed
Edmunds JW, Mahadevan LC, Clayton AL. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 2008; 27: 406–420. PubMed PMC
Li J, Moazed D, Gygi SP. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem 2002; 277: 49383–49388. PubMed
Li M, Phatnani HP, Guan Z, Sage H, Greenleaf AL, Zhou P. Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc Natl Acad Sci USA 2005; 102: 17636–17641. PubMed PMC
Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499: 214–218. PubMed PMC
Martinez P, Birkbak NJ, Gerlinger M, McGranahan N, Burrell RA, Rowan AJ et al. Parallel evolution of tumour subclones mimics diversity between tumours. J Pathol 2013; 230: 356–364. PubMed
Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 2014; 46: 225–233. PubMed PMC
Simon JM, Hacker KE, Singh D, Brannon AR, Parker JS, Weiser M et al. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 2014; 24: 241–250. PubMed PMC
Consortium EP. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004; 306: 636–640. PubMed
Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 2010; 28: 1045–1048. PubMed PMC
ENCODE Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 2011; 9: e1001046. PubMed PMC
Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 2013; 494: 492–496. PubMed PMC
Lukas J, Lukas C, Bartek J. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 2011; 13: 1161–1169. PubMed
Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 2012; 8: e1002717. PubMed PMC
Daugaard M, Baude A, Fugger K, Povlsen LK, Beck H, Sorensen CS et al. LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol 2012; 19: 803–810. PubMed
Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol 2014; 21: 366–374. PubMed PMC
Li F, Mao G, Tong D, Huang J, Gu L, Yang W et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 2013; 153: 590–600. PubMed PMC
Cancer Genome Atlas Research N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499: 43–49. PubMed PMC
Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of mutational processes operative in human cancer. Cell Rep 2013; 3: 246–259. PubMed PMC
Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004; 96: 261–268. PubMed PMC
de Almeida SF, Grosso AR, Koch F, Fenouil R, Carvalho S, Andrade J et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol 2011; 18: 977–983. PubMed
Carvalho S, Raposo AC, Martins FB, Grosso AR, Sridhara SC, Rino J et al. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res 2013; 41: 2881–2893. PubMed PMC
Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res 2012; 22: 2008–2017. PubMed PMC
Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J et al. Regulation of replication fork progression through histone supply and demand. Science 2007; 318: 1928–1931. PubMed
Mejlvang J, Feng Y, Alabert C, Neelsen KJ, Jasencakova Z, Zhao X et al. New histone supply regulates replication fork speed and PCNA unloading. J Cell Biol 2014; 204: 29–43. PubMed PMC
Tan BC, Chien CT, Hirose S, Lee SC. Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO J 2006; 25: 3975–3985. PubMed PMC
Abe T, Sugimura K, Hosono Y, Takami Y, Akita M, Yoshimura A et al. The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J Biol Chem 2011; 286: 30504–30512. PubMed PMC
Carvalho S, Vitor AC, Sridhara SC, Martins FB, Raposo AC, Desterro JM et al. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. eLife 2014; 3: e02482. PubMed PMC
Pfister SX, Ahrabi S, Zalmas LP, Sarkar S, Aymard F, Bachrati CZ et al. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep 2014; 7: 2006–2018. PubMed PMC
Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and darwinian selection in tumours. Trends Cell Biol 1999; 9: M57–M60. PubMed
Weaver BA, Cleveland DW. The aneuploidy paradox in cell growth and tumourigenesis. Cancer Cell 2008; 14: 431–433. PubMed PMC
Roylance R, Endesfelder D, Gorman P, Burrell RA, Sander J, Tomlinson I et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol Biomarkers Prevent 2011; 20: 2183–2194. PubMed PMC
Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, Popov S et al. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 2013; 3: 512–519. PubMed PMC
Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355. PubMed
Tort F, Bartkova J, Sehested M, Orntoft T, Lukas J, Bartek J. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumourigenesis. Cancer Res 2006; 66: 10258–10263. PubMed
Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 2012; 150: 1121–1134. PubMed PMC
Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, Liu XY, Sturm D, Korshunov A et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 2013; 125: 659–669. PubMed PMC
Altavilla G, Fassan M, Busatto G, Orsolan M, Giacomelli L. Microsatellite instability and hMLH1 and hMSH2 expression in renal tumours. Oncol Rep 2010; 24: 927–932. PubMed
Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumourigenesis. Nature 2005; 434: 864–870. PubMed
Suwaki N, Vanhecke E, Atkins KM, Graf M, Swabey K, Huang P et al. A HIF-regulated VHL-PTP1B-Src signaling axis identifies a therapeutic target in renal cell carcinoma. Sci Transl Med 2011; 3: 85ra47. PubMed PMC
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337. PubMed PMC
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415–421. PubMed PMC
Zaret K. Micrococcal nuclease analysis of chromatin structure. Curr Prot Mol Biol 2005, Edited by Frederick M Ausubel [et al.]. Chapter 21: Unit 21.1. PubMed
Young DB, Jonnalagadda J, Gatei M, Jans DA, Meyn S, Khanna KK. Identification of domains of ataxia-telangiectasia mutated required for nuclear localization and chromatin association. J Biol Chem 2005; 280: 27587–27594. PubMed
Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N et al. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 2014; 28: 943–958. PubMed PMC
Bengtsson H, Neuvial P, Speed TP. TumourBoost: normalization of allele-specific tumour copy numbers from a single pair of tumour-normal genotyping microarrays. BMC Bioinform 2010; 11: 245. PubMed PMC
Ortiz-Estevez M, Aramburu A, Bengtsson H, Neuvial P, Rubio A. CalMaTe: a method and software to improve allele-specific copy number of SNP arrays for downstream segmentation. Bioinformatics 2012; 28: 1793–1794. PubMed PMC
Van Loo P, Nordgard SH, Lingjaerde OC, Russnes HG, Rye IH, Sun W et al. Allele-specific copy number analysis of tumours. Proc Natl Acad Sci USA 2010; 107: 16910–16915. PubMed PMC
Statham AL, Strbenac D, Coolen MW, Stirzaker C, Clark SJ, Robinson MD. Repitools: an R package for the analysis of enrichment-based epigenomic data. Bioinformatics 2010; 26: 1662–1663. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760. PubMed PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139–140. PubMed PMC
Shen L, Shao N, Liu X, Nestler E. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 2014; 15: 284. PubMed PMC
dbGaP
PHS000178.V5.P5