HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25740848
DOI
10.1093/hmg/ddv083
PII: ddv083
Knihovny.cz E-zdroje
- MeSH
- aktivní transport - buněčné jádro MeSH
- buněčná diferenciace genetika MeSH
- exprese genu MeSH
- faktor C1 hostitelské buňky chemie genetika metabolismus MeSH
- HEK293 buňky MeSH
- kultivované buňky MeSH
- lidé MeSH
- malá interferující RNA genetika MeSH
- mentální retardace genetika MeSH
- mozek cytologie embryologie MeSH
- mutace * MeSH
- myši MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- oxidoreduktasy MeSH
- proliferace buněk MeSH
- RNA interference MeSH
- rodokmen MeSH
- sekvence aminokyselin MeSH
- substituce aminokyselin MeSH
- transdukce genetická MeSH
- transportní proteiny genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor C1 hostitelské buňky MeSH
- malá interferující RNA MeSH
- MMACHC protein, human MeSH Prohlížeč
- oxidoreduktasy MeSH
- transportní proteiny MeSH
Both gain- and loss-of-function mutations have recently implicated HCFC1 in neurodevelopmental disorders. Here, we extend our previous HCFC1 over-expression studies by employing short hairpin RNA to reduce the expression of Hcfc1 in embryonic neural cells. We show that in contrast to over-expression, loss of Hcfc1 favoured proliferation of neural progenitor cells at the expense of differentiation and promoted axonal growth of post-mitotic neurons. To further support the involvement of HCFC1 in neurological disorders, we report two novel HCFC1 missense variants found in individuals with intellectual disability (ID). One of these variants, together with three previously reported HCFC1 missense variants of unknown pathogenicity, were functionally assessed using multiple cell-based assays. We show that three out of the four variants tested result in a partial loss of HCFC1 function. While over-expression of the wild-type HCFC1 caused reduction in HEK293T cell proliferation and axonal growth of neurons, these effects were alleviated upon over-expression of three of the four HCFC1 variants tested. One of these partial loss-of-function variants disrupted a nuclear localization sequence and the resulting protein displayed reduced ability to localize to the cell nucleus. The other two variants displayed negative effects on the expression of the HCFC1 target gene MMACHC, which is responsible for the metabolism of cobalamin, suggesting that these individuals may also be susceptible to cobalamin deficiency. Together, our work identifies plausible cellular consequences of missense HCFC1 variants and identifies likely and relevant disease mechanisms that converge on embryonic stages of brain development.
School of Molecular and Biomedical Sciences University of Adelaide Adelaide 5000 Australia
School of Paediatrics and Reproductive Health
School of Paediatrics and Reproductive Health Robinson Research Institute and
Citace poskytuje Crossref.org