Genetic analysis of four European huchen (Hucho hucho Linnaeus, 1758) broodstocks from Poland, Germany, Slovakia, and Ukraine: implication for conservation

. 2015 Nov ; 56 (4) : 469-480. [epub] 20150306

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25743021
Odkazy

PubMed 25743021
PubMed Central PMC4617857
DOI 10.1007/s13353-015-0274-9
PII: 10.1007/s13353-015-0274-9
Knihovny.cz E-zdroje

Four broodstocks of European huchen (Hucho hucho) from: Poland, Germany, Slovakia, and Ukraine were investigated using ten microsatellite DNA loci. Microsatellite DNA analysis was successfully applied for the first time in the Polish broodstock of this fish species. The genetic variation and genetic distance between these broodstocks were evaluated. In addition, we examined the potential effects of a genetic bottleneck on the genetic variation of the broodstocks. The European huchen broodstocks exhibited moderate genetic diversity (PIC = 0.405-0.496 and I = 0.831-1.047) with the exception of German broodstock which presented higher genetic diversity (PIC = 0.590 and I = 1.254). Observed (Ho) and expected (He) heterozygosity across the investigated loci in all broodstocks ranged from 0.434 to 0.686 and from 0.452 to 0.650, respectively. Overall, the studied broodstocks were in Hardy-Weinberg equilibrium (HWE); however, from 8 to 42% of the loci deviated from HWE in each stock. The Garza-Williamson index (M = 0.146-0.279) and values of the heterozygosity excess revealed a reduction of genetic variation in all studied broodstocks because of the founder or bottleneck effect. The analysis of genetic differentiation (Fst) and Nei's genetic distance between pairs of broodstocks revealed that Polish and Ukrainian broodstocks of European huchen were characterized by the closest genetic distance. In contrast, the highest genetic divergence parameters (Fst and Nei's distance) were observed among German, Slovak, and Ukrainian broodstocks.

Erratum v

PubMed

Zobrazit více v PubMed

Alacs EA, Janzen FJ, Scribner KT. Genetic issues in freshwater turtle and tortoise conservation. Chelonian Res Monogr. 2007;4:107–123.

Ala-Honkola O, Uddstrom A, Diaz Pauli B, Lindstrom K. Strong inbreeding depression in Male mating behavior in a poeciliid fish. J Evolution Biol. 2009;22(7):1396–1406. doi: 10.1111/j.1420-9101.2009.01765.x. PubMed DOI

Araki H, Berejikian BA, Ford MJ, Blouin MS. Fitness of hatchery-reared salmonids in the wild. Ecol Appl. 2008;1(2):342–355. PubMed PMC

Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers. Mol Ecol. 2002;11:155–165. doi: 10.1046/j.0962-1083.2001.01436.x. PubMed DOI

Crespi BJ, Fulton MJ. Molecular systematic of Salmonidae: combined nuclear data yields a robust phylogeny. Mol Phylogenet Evol. 2004;31(2):658–679. doi: 10.1016/j.ympev.2003.08.012. PubMed DOI

Duchesne P, Bernatchez L. An analytical investigation of the dynamics of inbreeding in multi-generation supportive breeding. Conserv Genet. 2002;3(1):45–58. doi: 10.1023/A:1014255005544. DOI

Estoup A, Presa P, Krieg F, Vaiman D, Guymord R. CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout. Heredity. 1993;71:488–496. doi: 10.1038/hdy.1993.167. PubMed DOI

Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x PubMed

Flagg TA, Waknitz FW, Maynard DJ, Milner GB, Mahnken CVW (1995) The effect of hatcheries on native coho salmon populations in the lower Columbia River. Am Fish Soc Symp 15:366–375

Fopp-Bayat D. Microsatellite DNA variation in the Siberian sturgeon, Acipenser Baeri (Actinopterygii, Acipenseriformes, Acipenseridae), cultured in a Polish fish farm. Acta Ichtiologica Et Piscatoria. 2010;40(1):21–25. doi: 10.3750/AIP2010.40.1.03. DOI

Fopp-Bayat D, Jankun M, Kuźmiński H. Genetic characterization of Polish cultured brook trout, Salvelinus fontinalis (Mitchill), based on microsatellite DNA analysis. Arch Pol Fish. 2010;18:93–99. doi: 10.2478/v10086-010-0011-2. DOI

Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

Froufe E, Sefc KM, Alexandrino P, Weiss S. Isolation and characterization of Brachymystax lenok microsatellite loci and Cross-species amplification in Hucho spp. and Parahucho perryi. Mol Ecol Notes. 2004;4:150–152. doi: 10.1111/j.1471-8286.2004.00594.x. DOI

Froufe E, Alekseyev S, Knizhin I, Weiss S. Comparative mtDNA sequence (control region, ATPase 6 and NADH-1) divergence in Hucho taimen (Pallas) across four Siberian river basins. J Fish Biol. 2005;67:1040–1053. doi: 10.1111/j.0022-1112.2005.00807.x. DOI

Garza JC, Williamson EG. Detection of reduction in population size using data from microsatellite loci. Mol Ecol. 2001;10:305–318. doi: 10.1046/j.1365-294x.2001.01190.x. PubMed DOI

Geist J, Kolahsa M, Gum B, Kuehn R (2009) The importance of genetic cluster recognition for the conservation of migratory fish species: the example of the endangered European huchen Hucho hucho (L.). J Fish Biol 75:1063–1078. doi:10.1111/j.1095-8649.2009.02377.x PubMed

Gharrett AJ, Smoker WW, Reisenbichler RR, Taylor SG. Outbreeding depression in hybrids between odd- and even-broodyear pink salmon. Aquaculture. 1999;173(1–4):117–129. doi: 10.1016/S0044-8486(98)00480-3. DOI

Glover KA, Taggart JB, Skaala O, Teale AJ. Comparative performance of juvenile sea trout families in high and low feeding environments. J Fish Biol. 2001;59:105–115. doi: 10.1111/j.1095-8649.2001.tb02341.x. DOI

Glover KA, Taggart JB, Skaala O, Teale AJ. A study of inadvertent domestication selection during start-feeding of brown trout families. J Fish Biol. 2004;64:1168–1178. doi: 10.1111/j.0022-1112.2004.00376.x. DOI

Goudet J (2001) Fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet (1995). Available from http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 01 Apr 2014

Guangxiang T, Youyi K, Jiasheng Y, Ligun L, Xaiowen S. Isolation of microsatellite DNA and analysis on genetic diversity of endangered fish, Hucho taimen (Pallas) Mol Ecol Notes. 2006;6:1099–1101. doi: 10.1111/j.1471-8286.2006.01447.x. DOI

Gum B, Gross R, Rottmann O, Schroder W, Kuhn R. Microsatellite variation in Bavarian populations of European grayling (Thymallus thymallus): implications for conservation. Conserv Genet. 2003;4:659–672. doi: 10.1023/B:COGE.0000006106.64243.e6. DOI

Gum B, Gross R, Kuehn R. Discriminating the impact of recent human mediated stock transferred from historical gene flow on genetic structure of European grayling Thymallus thymallus L. J Fish Biol. 2006;69:115–135. doi: 10.1111/j.1095-8649.2006.01264.x. DOI

Guo-Sheng S, Liljedahl LK, Gall GAE. Effects of inbreeding on growth and repetitive traits in rainbow trout (Oncorhynchus mykiss) Aquaculture. 1996;142:139–148. doi: 10.1016/0044-8486(96)01255-0. DOI

Hansen M. Estimating the long-term effects of stock-breaking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Mol Ecol. 2002;11:1003–1015. doi: 10.1046/j.1365-294X.2002.01495.x. PubMed DOI

Hellerman EM, Grobler PJ, Jones JW (2007) Application of DNA markers for population genetic analysis. In: Liu Z (ed) Aquaculture genome technologies. Blackwell, New York, pp 109–136

Hoekstra JM, Bartz KK, Ruckelshaus MH, Moslemi JM, Harms TK. Quantitative threat analysis for management of an imperiled species-Chinook salmon (Oncorhynchus tshawytscha) Ecol Appl. 2007;17:2061–2073. doi: 10.1890/06-1637.1. PubMed DOI

Holcik J. Conservation of the huchen, Hucho hucho (L.), (Salmonidae) with special reference to Slovakian rivers. J Fish Biol. 1990;37(suppl A):113–121. doi: 10.1111/j.1095-8649.1990.tb05027.x. DOI

Holcik J. Threatened fishes of the world: Hucho hucho (Linnaeus, 1758) (Salmonidae) Environ Biol Fish. 1995;43:105–106. doi: 10.1007/BF00001822. DOI

Hongyu M, Jingfeng Y, Pengzhi S, Songlin C. Genetic analysis of gynogenetic and common populations of verasper moseri using SSR markers. Wuhan Univ J Nat Sci. 2009;14(3):267–273. doi: 10.1007/s11859-009-0315-5. DOI

Huff DD, Miller LM, Chizinski CJ, Vondracek B. Mixed-source reintroductions lead to outbreeding depression in second generation descendants of a native North American fish. Mol Ecol. 2011;20(20):4246–4258. doi: 10.1111/j.1365-294X.2011.05271.x. PubMed DOI

IUCN (2013) Red list of Threatened Species. http://www.iucnredlist.org. Accessed 01 Apr 2014

Kaczmarczyk D, Zuchowska E. Genetic diversity of two lake minnow, Eupallasella percnurus (Pall.), populations based on microsatellite DNA polymorphism. Arch Pol Fish. 2011;19:145–151. doi: 10.2478/v10086-011-0018-3. DOI

Kaczmarczyk D, Luczyński M, Brzuzan P. Genetic variation in three paddlefish (Polyodon spathula Walbaum) stocks based on microsatellite DNA analysis. Czech J Anim Sci. 2012;57(8):345–352.

Kim JE, Withler RE, Ritland C, Cheng KM. Genetic variation within and between domesticated Chinook salmon, Oncorhynchus tshawytscha, strains and their progenitor populations. Dev Biol Fish. 2004;23:371–378. doi: 10.1023/B:EBFI.0000022891.83210.2e. DOI

Kottelat M, Freyhof J. Handbook of European freshwater fishes. Brighton: Simpson; 2007.

Liang LQ, Chang YM, Dong CZ, Sum XW (2004) Genetic analysis for Hucho taimen in Wusuli river with microsatellites. J Fish China 28(3):241–244

Liu K, Muse SV. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics. 2005;21(9):2128–2129. doi: 10.1093/bioinformatics/bti282. PubMed DOI

Liu B, You-Yi K, Guang-Xiang T, Jia-Sheng Y. Analysis of genetic diversity on 9 wild stocks of Taimen (Hucho taimen) by microsatellite markers. Zool Res. 2011;32(6):597–604. PubMed

Luikart G, Cornuet JM. Empirical evaluation of a test for identifying recently bottleneck populations from allele frequency data. Conserv Biol. 1998;12:228–237. doi: 10.1046/j.1523-1739.1998.96388.x. DOI

Luikart G, Cournet JM. Estimating the effective number of breeders from heterozygote excess in progeny. Genetics. 1999;151:1211–1216. PubMed PMC

O’Reilly PT, Hamilton LC, McConnell SK, Wright JM. Rapid analysis if genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fish Aquat Sci. 1996;53(10):2292–2298.

Olsen JB, Bentzen P, Seeb JE. Characterization of seven microsatellite loci derived from pink salmon. Mol Ecol. 1998;7(8):1087–1089. PubMed

Olsson J, Florin AB, Mo K, Aho T, Ryman N. Genetic structure of whitefish (Coregonus maraena) in the Baltic Sea. Estuar Coast Shelf Sci. 2012;97:104–113. doi: 10.1016/j.ecss.2011.11.032. DOI

Pante MJR, Gjerde B, McMillan I. Effect of inbreeding on body weight at harvest in rainbow trout, Oncorhynchus mykiss. Aquaculture. 2001;192:201–211. doi: 10.1016/S0044-8486(00)00467-1. DOI

Perry GM, King TL, St.-Cyr J, Valcourt M, Bernatchez L. Isolation and cross-familial amplification of 41 microsatellites for the brook charr (Salvelinus fontinalis) Mol Ecol Notes. 2005;5:346–351. doi: 10.1111/j.1471-8286.2005.00922.x. DOI

Phillips RB, Oakley TH, Davis EL. Evidence supporting the paraphyly of Hucho (Salmonidae) based on ribosomal DNA restriction maps. J Fish Biol. 1995;47:956–961. doi: 10.1111/j.1095-8649.1995.tb06021.x. DOI

Piry S, Luikard G, Cornuet JM. Bottleneck: A computer program for detecting recent reductions in effective population size from allele frequency data. J Hered. 1999;4:502–503. doi: 10.1093/jhered/90.4.502. DOI

Poteaux C, Bonhomme F, Berrebi P. Microsatellite polymorphism and genetic impact of restocking in Mediterranean brown trout (Salmo trutta L.) Heredity. 1999;82:645–653. doi: 10.1046/j.1365-2540.1999.00519.x. PubMed DOI

PRDBoA (2002) Polish red data book of animals, vertebrates. http://eunis.eea.europa.eu/references/1782/general. Accessed 01 Apr 2014

Presa P, Guymard R. Conservation of microsatellites in three species of salmonids. J Fish Biol. 1996;90(6):1326–1329.

Rousset F. GenePop’007: a complete re-implementation of the GenePop software for Windows and Linux. Mol Ecol Res. 2008;8(1):103–106. doi: 10.1111/j.1471-8286.2007.01931.x. PubMed DOI

Schmutz S, Zitek A, Zobl S, Jungwirth M, Knopf N, Kraus E, Bauer T, Kaufmann T. Integrated approach to the conservation and restoration of Danube Salmonid, Hucho hucho, populations in Austria. In: Collares-Pereira MJ, Coelho MM, Cowx IG, editors. Freshwater fish conservation: options for the future. Fishing news books. Oxford: Blackwell Science; 2002. pp. 157–173.

Snook RR. Sperm in competition: not playing the numbers. Trends Ecol Evol. 2005;20:46–53. doi: 10.1016/j.tree.2004.10.011. PubMed DOI

Sonstebo JH, Borgstrom R, Heun M. Genetic structure of brown trout (Salmo trutta L.) from the Hardangervidda mountain plateau (Norway) analyzed by microsatellite DNA: a basis for conservation guideline. Conserv Genet. 2007;8:33–44. doi: 10.1007/s10592-006-9145-6. DOI

Tamura K, Stretcher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197 PubMed PMC

Tzika AC, Rosa SFP, Fabiani A, Snell HL, Snell HM, Marquez C, Tapia W, Rassmann K, Gentile G, Milinkovitch MC. Population genetics of Galapagos land iguana (genus Conolophus) remnant populations. Mol Ecol. 2008;17:4943–4952. doi: 10.1111/j.1365-294X.2008.03967.x. PubMed DOI

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. Micro-Checker: software for identifying and correcting genotypes errors in microsatellite data. Mol Ecol Notes. 2004;4(3):535–538. doi: 10.1111/j.1471-8286.2004.00684.x. DOI

Vrijenhoek RC. Conservation genetics of freshwater fish. J Fish Biol. 1998;53:394–412. doi: 10.1111/j.1095-8649.1998.tb01039.x. DOI

Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991;10:506–513. PubMed

Wang S, Hard JJ, Utter F. Salmonid inbreeding: a review. Rev Fish Biol Fish. 2002;11:301–319. doi: 10.1023/A:1021330500365. DOI

Wang Y, Guo R, Li H, Zhang X, Du J, Song Z. The complete mitochondrial genome of the Sichuan taimen (Hucho bleekeri): repetitive sequences in the control region and phylogenetic implications for Salmonidae. Mar Genomics. 2011;4:221–228. doi: 10.1016/j.margen.2011.06.003. PubMed DOI

Waples RS. Dispelling some myths about hatcheries. Fisheries. 1999;24:12–21. doi: 10.1577/1548-8446(1999)024<0012:DSMAH>2.0.CO;2. DOI

Wedekind C, Rudolfsen G, Jacob A, Urbach D, Muller R. The genetic consequences of hatchery-induced competition in a salmonid. Biol Conserv. 2007;137:180–188. doi: 10.1016/j.biocon.2007.01.025. DOI

Weiss S, Marić S, Snoj A. Regional structure despite limited mtDNA sequence diversity found in the endangered huchen, Hucho hucho (Linnaeus, 1758) Hydrobiologia. 2011;658:103–110. doi: 10.1007/s10750-010-0453-y. DOI

Witkowski A, Bajic A, Treer T, Hegedis A, Maric S, Sprem N, Piria M, Kapusta A. Past and present of and perspectives for the Danube huchen, Hucho hucho (L.), in the Danube basin. Arch Pol Fish. 2013;21:129–142.

Witkowski A, Goryczko K, Kowalewski M (2013b) The history of huchen, Hucho hucho (L.), in Poland — distribution, restoration and conservation. Arch Pol Fish 21:161–168. doi:10.2478/aopf-2013-0013

Xia YZ, Chen YY, Sheng Y. Phylogeographic structure of lenok (Brachymystax lenok Pallas) (Salmoninae, Salmonidae) populations in water system of eastern China, inferred from mitochondrial DNA sequences. Zool Stud. 2006;45:190–200.

Yeh FC, Boylet JB. Population genetic analysis of codominant and dominant markers and quantitative traits. Belg J Bot. 1997;129:157.

You-Yi K, Guang-Xiang T, Wei X, Jia-Sheng Y, Xiao-Wen S. Analysis of genetic diversity in the endangered Hucho taimen from China. Acta Ecol Sin. 2009;29:29–97.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...