Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM018360
NIGMS NIH HHS - United States
R37 GM018360
NIGMS NIH HHS - United States
GM1836036
NIGMS NIH HHS - United States
PubMed
25743373
PubMed Central
PMC4833118
DOI
10.1007/s00204-015-1481-1
PII: 10.1007/s00204-015-1481-1
Knihovny.cz E-zdroje
- Klíčová slova
- Acetylcholinesterase, Aging, Mipafox, Organophosphorus compounds, Oximes, Sarin,
- MeSH
- acetylcholinesterasa chemie metabolismus MeSH
- cholinesterasové inhibitory farmakokinetika MeSH
- fosforylace MeSH
- isofluorofát analogy a deriváty chemie farmakokinetika MeSH
- katalytická doména MeSH
- kinetika MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- organofosforové sloučeniny chemie farmakokinetika MeSH
- oximy chemie MeSH
- paraoxon farmakokinetika MeSH
- reaktivátory cholinesterasy chemie farmakologie MeSH
- sarin analogy a deriváty chemie MeSH
- sekvence aminokyselin MeSH
- serin metabolismus MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- isofluorofát MeSH
- methylphosphonic acid MeSH Prohlížeč
- mipafox MeSH Prohlížeč
- organofosforové sloučeniny MeSH
- oximy MeSH
- paraoxon MeSH
- reaktivátory cholinesterasy MeSH
- sarin MeSH
- serin MeSH
The hydroxyl oxygen of the catalytic triad serine in the active center of serine hydrolase acetylcholinesterase (AChE) attacks organophosphorus compounds (OPs) at the phosphorus atom to displace the primary leaving group and to form a covalent bond. Inhibited AChE can be reactivated by cleavage of the Ser-phosphorus bond either spontaneously or through a reaction with nucleophilic agents, such as oximes. At the same time, the inhibited AChE adduct can lose part of the molecule by progressive dealkylation over time in a process called aging. Reactivation of the aged enzyme has not yet been demonstrated. Here, our goal was to study oxime reactivation and aging reactions of human AChE inhibited by mipafox or a sarin analog (Flu-MPs, fluorescent methylphosphonate). Progressive reactivation was observed after Flu-MPs inhibition using oxime 2-PAM. However, no reactivation was observed after mipafox inhibition with 2-PAM or the more potent oximes used. A peptide fingerprinted mass spectrometry (MS) method, which clearly distinguished the peptide with the active serine (active center peptide, ACP) of the human AChE adducted with OPs, was developed by MALDI-TOF and MALDI-TOF/TOF. The ACP was detected with a diethyl-phosphorylated adduct after paraoxon inhibition, and with an isopropylmethyl-phosphonylated and a methyl-phosphonylated adduct after Flu-MPs inhibition and subsequent aging. Nevertheless, nonaged nonreactivated complexes were seen after mipafox inhibition and incubation with oximes, where MS data showed an ACP with an NN diisopropyl phosphoryl adduct. The kinetic experiments showed no reactivation of activity. The computational molecular model analysis of the mipafox-inhibited hAChE plots of energy versus distance between the atoms separated by dealkylation showed a high energy demand, thus little aging probability. However, with Flu-MPs and DFP, where aging was observed in our MS data and in previously published crystal structures, the energy demand calculated in modeling was lower and, consequently, aging appeared as a more likely reaction. We document here direct evidence for a phosphorylated hAChE refractory to oxime reactivation, although we observed no aging.
Zobrazit více v PubMed
Amitai G, Adani R, Yacov G, Yishay S, Teitlboim S, Tveria L, Limanovich O, Kushnir M, Meshulam H. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity. Toxicology. 2007;233(1 – 3):187–198. PubMed
Baker PR, Agard NJ, Burlingame AL, Chalkley RJ. Quantitative Analysis on the Public Protein Prospector Web Site. 58th ASMS Conference of Mass Spectrometry and Allied Topics; May 23rd – May 27th; Salt Lake City, Utah. 2010.
Barone V, Cossi M, Tomasi J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comp Chem. 1998;19:404–417.
Carletti E, Colletier JP, Dupeux F, Trovaslet M, Masson P, Nachon F. Structural evidence that human acetylcholinesterase inhibited by tabun ages through O-dealkylation. J Med Chem. 2010;53(10):4002–4008. PubMed
Cochran R, Kalisiak J, Küçükkilinç T, Radic Z, Garcia E, Zhang L, Ho KY, Amitai G, Kovarik Z, Fokin VV, Sharpless KB, Taylor P. Oxime-assisted acetylcholinesterase catalytic scavengers of organophosphates that resist aging. J Biol Chem. 2011;286(34):29718–29724. PubMed PMC
Doorn JA, Schall M, Gage DA, Talley TT, Thompson CM, Richardson RJ. Identification of butyrylcholinesterase adducts after inhibition with isomalathion using mass spectrometry: difference in mechanism between (1R)- and(1S)-stereoisomers. Toxicol Appl Pharmacol. 2001 Oct;176(2):73–80. PubMed
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision C.02. Wallingford CT: Gaussian, Inc.; 2004.
Gonzalez C, Schlegel CB. An improved algorithm for reaction path following. J Chem Phys. 1989;90:2154–2159.
Grigoryan H, Schopfer LM, Peeples ES, Duysen EG, Grigoryan M, Thompson CM, Lockridge O. Mass spectrometry identifies multiple organophosphorylated sites on tubulin. Toxicol Appl Pharmacol. 2009;240(2):149–158. PubMed PMC
Harris LW, Fleisher JH, Clark J, Cliff WJ. Dealkylation and loss of capacity for reactivation of cholinesterase inhibited by sarin. Science. 1966;154(3747):404–407. PubMed
Hehre WJ, Deppmeier BJ, Klunzinger PE. PC SPARTAN Pro. Irvine, California: Wavefunction Inc.; 1999.
Hobbiger . In: Cholinesterases and Anticholinesterase Agents. Koelle GB, editor. Berlin: Springer; 1963. 9.941.
Jennings LL, Malecki M, Komives EA, Taylor P. Direct analysis of the kinetic profiles of organophosphate-acetylcholinesterase adducts by MALDI-TOF mass spectrometry. Biochemistry. 2003;42(37):11083–11091. PubMed
Kropp TJ, Richardson RJ. Mechanism of aging of mipafox-inhibited PubMed
Kropp TJ, Glynn P, Richardson RJ. The mipafox-inhibited catalytic domain of human neuropathy target esterase ages by reversible proton loss. Biochemistry. 2004;43(12):3716–3722. PubMed
Kropp TJ, Richardson RJ. Aging of mipafox-inhibited human acetylcholinesterase proceeds by displacement of both isopropylamine groups to yield a phosphate adduct. Chem Res Toxicol. 2006:334–339. PubMed
Masson P, Froment MT, Bartels CF, Lockridge O. Importance of aspartate-70 in organophosphate inhibition, oxime re-activation and aging of human butyrylcholinesterase. Biochem J. 1997;325(Pt 1):53–61. PubMed PMC
Masson P, Nachon F, Lockridge O. Structural approach to the aging of phosphylated cholinesterases. Chem Biol Interact. 2010;187(1–3):157–162. PubMed
Milatovic D, Johnson MK. Reactivation of phosphorodiamidated acetylcholinesterase and neuropathy target esterase by treatment of inhibited enzyme with potassium fluoride. Chem Biol Interact. 1993 Jun;87(1–3):425–430. PubMed
Millard CB, Kryger G, Ordentlich A, Greenblatt HM, Harel M, Raves ML, Segall Y, Barak D, Shafferman A, Silman I, Sussman JL. Crystal structures of aged phosphonylated acetylcholinesterase: nerve agent reaction products at the atomic level. Biochemistry. 1999;38(22):7032–7039. PubMed
Radić Z, Sit RK, Kovarik Z, Berend S, Garcia E, Zhang L, Amitai G, Green C, Radić B, Fokin VV, Sharpless KB, Taylor P. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. J Biol Chem. 2012;287(15):11798–11809. PubMed PMC
Ramalho TC, da Cunha EFF, Figueroa-Villar JD, Peixoto FC. Computational NMR investigation of Radiosensitizer in solution. Journal of Theoretical and Computational Chemistry. 2008;7:37–52.
Ramalho TC, Taft CA. Thermal and solvent effects on the NMR and UV parameters of some bioreductive drugs. J Chem Phys. 2005;123:0543191–0543197. PubMed
Segall Y, Waysbort D, Barak D, Ariel N, Doctor BP, Grunwald J, Ashani Y. Direct observation and elucidation of the structures of aged and nonaged phosphorylated cholinesterases by 31P NMR spectroscopy. Biochemistry. 1993;32(49):13441–13450. PubMed
Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem. 2004;76(13):3590–3598. PubMed
Sit RK, Fokin VV, Amitai G, Sharpless KB, Taylor P, Radić Z. Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification. J Med Chem. 2014;57(4):1378–1389. PubMed PMC
Sit RK, Radić Z, Gerardi V, Zhang L, Garcia E, Katalinić M, Amitai G, Kovarik Z, Fokin VV, Sharpless KB, Taylor P. New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. J Biol Chem. 2011;286(22):19422–19430. PubMed PMC
Sultatos LG. Mammalian toxicology of organophosphorus pesticides. J Toxicol Environ Health. 1994;43(3):271–289. PubMed
Taylor P, Radić Z. The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol. 1994;34:281–320. PubMed
Taylor P. Anticholinesterase agents. In: Hardman JG, Limbird LE, editors. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 10th. New York: McGraw-Hill; 2001. pp. 175–191.