Graphene oxide immobilized enzymes show high thermal and solvent stability
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25757536
DOI
10.1039/c5nr00438a
Knihovny.cz E-zdroje
- MeSH
- adsorpce MeSH
- aktivace enzymů MeSH
- enzymy imobilizované chemie MeSH
- grafit chemie MeSH
- lipasa chemie MeSH
- nanočástice chemie ultrastruktura MeSH
- oxidy chemie MeSH
- rozpouštědla chemie MeSH
- stabilita enzymů MeSH
- teplota MeSH
- testování materiálů MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- enzymy imobilizované MeSH
- grafit MeSH
- lipasa MeSH
- oxidy MeSH
- rozpouštědla MeSH
The thermal and solvent tolerance of enzymes is highly important for their industrial use. We show here that the enzyme lipase from Rhizopus oryzae exhibits exceptionally high thermal stability and high solvent tolerance and even increased activity in acetone when immobilized onto a graphene oxide (GO) nanosupport prepared by Staudenmaier and Brodie methods. We studied various forms of immobilization of the enzyme: by physical adsorption, covalent attachment, and additional crosslinking. The activity recovery was shown to be dependent on the support type, enzyme loading and immobilization procedure. Covalently immobilized lipase showed significantly better resistance to heat inactivation (the activity recovery was 65% at 70 °C) in comparison with the soluble counterpart (the activity recovery was 65% at 40 °C). Physically adsorbed lipase achieved over 100% of the initial activity in a series of organic solvents. These findings, showing enhanced thermal stability and solvent tolerance of graphene oxide immobilized enzyme, will have a profound impact on practical industrial scale uses of enzymes for the conversion of lipids into fuels.
Citace poskytuje Crossref.org