Substrate recognition and function of the R2TP complex in response to cellular stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
25767478
PubMed Central
PMC4341119
DOI
10.3389/fgene.2015.00069
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage response, R2TP complex, cancer, cellular stress, protein folding,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The R2TP complex is a HSP90 co-chaperone, which consists of four subunits: PIH1D1, RPAP3, RUVBL1, and RUVBL2. It is involved in the assembly of large protein or protein-RNA complexes such as RNA polymerase, small nucleolar ribonucleoproteins (snoRNPs), phosphatidylinositol 3 kinase-related kinases (PIKKs), and their complexes. While RPAP3 has a HSP90 binding domain and the RUVBLs comprise ATPase activities important for R2TP functions, PIH1D1 contains a PIH-N domain that specifically recognizes phosphorylated substrates of the R2TP complex. In this review we provide an overview of the current knowledge of the R2TP complex with the focus on the recently identified structural and mechanistic features of the R2TP complex functions. We also discuss the way R2TP regulates cellular response to stress caused by low levels of nutrients or by DNA damage and its possible exploitation as a target for anti-cancer therapy.
Zobrazit více v PubMed
Ali M. M., Roe S. M., Vaughan C. K., Meyer P., Panaretou B., Piper P. W., et al. (2006). Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440 1013–1017 10.1038/nature04716 PubMed DOI PMC
Back R., Dominguez C., Rothe B., Bobo C., Beaufils C., Morera S., et al. (2013). High-resolution structural analysis shows how Tah1 tethers Hsp90 to the R2TP complex. Structure 21 1834–1847 10.1016/j.str.2013.07.024 PubMed DOI
Banin S., Moyal L., Shieh S., Taya Y., Anderson C. W., Chessa L., et al. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281 1674–1677 10.1126/science.281.5383.1674 PubMed DOI
Bartkova J., Horejsi Z., Koed K., Kramer A., Tort F., Zieger K., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434 864–870 10.1038/nature03482 PubMed DOI
Benbahouche Nel H., Iliopoulos I., Torok I., Marhold J., Henri J., Kajava A. V., et al. (2014). Drosophila Spag is the homolog of RNA polymerase II-associated protein 3 (RPAP3) and recruits the heat shock proteins 70 and 90 (Hsp70 and Hsp90) during the assembly of cellular machineries. J. Biol. Chem. 289 6236–6247 10.1074/jbc.M113.499608 PubMed DOI PMC
Bizarro J., Charron C., Boulon S., Westman B., Pradet-Balade B., Vandermoere F., et al. (2014). Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. J. Cell Biol. 207 463–480 10.1083/jcb.201404160 PubMed DOI PMC
Boulon S., Bertrand E., Pradet-Balade B. (2012). HSP90 and the R2TP co-chaperone complex: building multi-protein machineries essential for cell growth and gene expression. RNA Biol. 9 148–154 10.4161/rna.18494 PubMed DOI
Boulon S., Marmier-Gourrier N., Pradet-Balade B., Wurth L., Verheggen C., Jady B. E., et al. (2008). The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J. Cell Biol. 180 579–595 10.1083/jcb.200708110 PubMed DOI PMC
Boulon S., Pradet-Balade B., Verheggen C., Molle D., Boireau S., Georgieva M., et al. (2010). HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol. Cell 39 912–924 10.1016/j.molcel.2010.08.023 PubMed DOI PMC
Calderwood S. K., Khaleque M. A., Sawyer D. B., Ciocca D. R. (2006). Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem. Sci. 31 164–172 10.1016/j.tibs.2006.01.006 PubMed DOI
Canman C. E., Lim D. S., Cimprich K. A., Taya Y., Tamai K., Sakaguchi K., et al. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281 1677–1679 10.1126/science.281.5383.1677 PubMed DOI
Chagot M. E., Jacquemin C., Branlant C., Charpentier B., Manival X., Quinternet M. (2014). H, N and C resonance assignments of the two TPR domains from the human RPAP3 protein. Biomol. NMR Assign. 10.1007/s12104-014-9552-4 [Epub ahead of print]. PubMed DOI
Chapman J. R., Jackson S. P. (2008). Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep. 9 795–801 10.1038/embor.2008.103 PubMed DOI PMC
Choi E. J., Cho B. J., Lee D. J., Hwang Y. H., Chun S. H., Kim H. H., et al. (2014). Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases. BMC Cancer 14:17 10.1186/1471-2407-1417 PubMed DOI PMC
Cloutier P., Al-Khoury R., Lavallee-Adam M., Faubert D., Jiang H., Poitras C., et al. (2009). High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes. Methods 48 381–386 10.1016/j.ymeth.2009.05.005 PubMed DOI PMC
Cloutier P., Coulombe B. (2010). New insights into the biogenesis of nuclear RNA polymerases? Biochem. Cell Biol. 88 211–221 10.1139/o09-173 PubMed DOI PMC
Cozza G., Pinna L. A., Moro S. (2013). Kinase CK2 inhibition: an update. Curr. Med. Chem. 20 671–693 10.2174/092986713804999312 PubMed DOI
Cramer P., Armache K. J., Baumli S., Benkert S., Brueckner F., Buchen C., et al. (2008). Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 37 337–352 10.1146/annurev.biophys.37.032807.130008 PubMed DOI
Eckert K., Saliou J. M., Monlezun L., Vigouroux A., Atmane N., Caillat C., et al. (2010). The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity. J. Biol. Chem. 285 31304–31312 10.1074/jbc.M110.138263 PubMed DOI PMC
Elkaim J., Castroviejo M., Bennani D., Taouji S., Allain N., Laguerre M., et al. (2012). First identification of small-molecule inhibitors of Pontin by combining virtual screening and enzymatic assay. Biochem. J. 443 549–559 10.1042/BJ20111779 PubMed DOI
Fernandez-Saiz V., Targosz B. S., Lemeer S., Eichner R., Langer C., Bullinger L., et al. (2013). SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nat. Cell Biol. 15 72–81 10.1038/ncb2651 PubMed DOI
Fruman D. A., Rommel C. (2014). PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13 140–156 10.1038/nrd4204 PubMed DOI PMC
Gallant P. (2007). Control of transcription by Pontin and Reptin. Trends Cell Biol. 17 187–192 10.1016/j.tcb.2007.02.005 PubMed DOI
Gonzales F. A., Zanchin N. I., Luz J. S., Oliveira C. C. (2005). Characterization of Saccharomyces cerevisiae Nop17p, a novel Nop58p-interacting protein that is involved in Pre-rRNA processing. J. Mol. Biol. 346 437–455 10.1016/j.jmb.2004.11.071 PubMed DOI
Gorynia S., Bandeiras T. M., Pinho F. G., Mcvey C. E., Vonrhein C., Round A., et al. (2011). Structural and functional insights into a dodecameric molecular machine – the RuvBL1/RuvBL2 complex. J. Struct. Biol. 176 279–291 10.1016/j.jsb.2011.09.001 PubMed DOI
Grant P. A., Schieltz D., Pray-Grant M. G., Yates J. R., III, Workman J. L. (1998). The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 2 863–867 10.1016/S1097-2765(00)80300-7 PubMed DOI
Gribun A., Cheung K. L., Huen J., Ortega J., Houry W. A. (2008). Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex. J. Mol. Biol. 376 1320–1333 10.1016/j.jmb.2007.12.049 PubMed DOI
Grigoletto A., Lestienne P., Rosenbaum J. (2011). The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim. Biophys. Acta 1815 147–157 10.1016/j.bbcan.2010.11.002 PubMed DOI
Grigoletto A., Neaud V., Allain-Courtois N., Lestienne P., Rosenbaum J. (2013). The ATPase activity of reptin is required for its effects on tumor cell growth and viability in hepatocellular carcinoma. Mol. Cancer Res. 11 133–139 10.1158/1541-7786.MCR-12-0455 PubMed DOI
Grozdanov P. N., Roy S., Kittur N., Meier U. T. (2009). SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA 15 1188–1197 10.1261/rna.1532109 PubMed DOI PMC
Gudjonsson T., Altmeyer M., Savic V., Toledo L., Dinant C., Grofte M., et al. (2012). TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 150 697–709 10.1016/j.cell.2012.06.039 PubMed DOI
Guenther B., Onrust R., Sali A., O’Donnell M., Kuriyan J. (1997). Crystal structure of the delta’ subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91 335–345 10.1016/S0092-8674(00)80417-1 PubMed DOI
Guerra B., Iwabuchi K., Issinger O. G. (2014). Protein kinase CK2 is required for the recruitment of 53BP1 to sites of DNA double-strand break induced by radiomimetic drugs. Cancer Lett. 345 115–123 10.1016/j.canlet.2013.11.008 PubMed DOI
Gyenis L., Turowec J. P., Bretner M., Litchfield D. W. (2013). Chemical proteomics and functional proteomics strategies for protein kinase inhibitor validation and protein kinase substrate identification: applications to protein kinase CK2. Biochim. Biophys. Acta 1834 1352–1358 10.1016/j.bbapap.2013.02.006 PubMed DOI
Hoffman G. R., Moerke N. J., Hsia M., Shamu C. E., Blenis J. (2010). A high-throughput, cell-based screening method for siRNA and small molecule inhibitors of mTORC1 signaling using the In Cell Western technique. Assay Drug Dev. Technol. 8 186–199 10.1089/adt.2009.0213 PubMed DOI PMC
Horejsi Z., Stach L., Flower T. G., Joshi D., Flynn H., Skehel J. M., et al. (2014). Phosphorylation-dependent PIH1D1 Interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep. 7 19–26 10.1016/j.celrep.2014.03.013 PubMed DOI PMC
Horejsi Z., Takai H., Adelman C. A., Collis S. J., Flynn H., Maslen S., et al. (2010). CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol. Cell 39 839–850 10.1016/j.molcel.2010.08.037 PubMed DOI
Huber O., Menard L., Haurie V., Nicou A., Taras D., Rosenbaum J. (2008). Pontin and reptin, two related ATPases with multiple roles in cancer. Cancer Res. 68 6873–6876 10.1158/0008-5472.CAN-08-0547 PubMed DOI
Huen J., Kakihara Y., Ugwu F., Cheung K. L., Ortega J., Houry W. A. (2010). Rvb1-Rvb2: essential ATP-dependent helicases for critical complexes. Biochem. Cell Biol. 88 29–40 10.1139/o09-122 PubMed DOI
Hurov K. E., Cotta-Ramusino C., Elledge S. J. (2010). A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev. 24 1939–1950 10.1101/gad.1934210 PubMed DOI PMC
Ikura T., Tashiro S., Kakino A., Shima H., Jacob N., Amunugama R., et al. (2007). DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol. Cell Biol. 27 7028–7040 10.1128/MCB.00579 PubMed DOI PMC
Iles N., Rulten S., El-Khamisy S. F., Caldecott K. W. (2007). APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks. Mol. Cell. Biol. 27 3793–3803 10.1128/MCB.02269 PubMed DOI PMC
Itsuki Y., Saeki M., Nakahara H., Egusa H., Irie Y., Terao Y., et al. (2008). Molecular cloning of novel Monad binding protein containing tetratricopeptide repeat domains. FEBS Lett. 582 2365–2370 10.1016/j.febslet.2008.05.041 PubMed DOI
Izumi N., Yamashita A., Iwamatsu A., Kurata R., Nakamura H., Saari B., et al. (2010). AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay. Sci. Signal. 3 ra27 10.1126/scisignal.2000468 PubMed DOI
Izumi N., Yamashita A., Ohno S. (2012). Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2. Nucleus 3 29–43 10.4161/nucl.18926 PubMed DOI PMC
Jakob U., Lilie H., Meyer I., Buchner J. (1995). Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J. Biol. Chem. 270 7288–7294 10.1074/jbc.270.13.7288 PubMed DOI
Jeronimo C., Forget D., Bouchard A., Li Q., Chua G., Poitras C., et al. (2007). Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol. Cell 27 262–274 10.1016/j.molcel.2007.06.027 PubMed DOI PMC
Jeronimo C., Langelier M. F., Zeghouf M., Cojocaru M., Bergeron D., Baali D., et al. (2004). RPAP1, a novel human RNA polymerase II-associated protein affinity purified with recombinant wild-type and mutated polymerase subunits. Mol. Cell. Biol. 24 7043–7058 10.1128/MCB.24.16.7043-7058.2004 PubMed DOI PMC
Jha S., Dutta A. (2009). RVB1/RVB2: running rings around molecular biology. Mol. Cell 34 521–533 10.1016/j.molcel.2009.05.016 PubMed DOI PMC
Jonsson Z. O., Jha S., Wohlschlegel J. A., Dutta A. (2004). Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol. Cell 16 465–477 10.1016/j.molcel.2004.09.033 PubMed DOI
Kakihara Y., Houry W. A. (2012). The R2TP complex: discovery and functions. Biochim. Biophys. Acta 1823 101–107 10.1016/j.bbamcr.2011.08.016 PubMed DOI
Kakihara Y., Makhnevych T., Zhao L., Tang W., Houry W. A. (2014). Nutritional status modulates box C/D snoRNP biogenesis by regulated subcellular relocalization of the R2TP complex. Genome Biol. 15 404 10.1186/s13059-014-0404-4 PubMed DOI PMC
Kamano Y., Saeki M., Egusa H., Kakihara Y., Houry W. A., Yatani H., et al. (2013). PIH1D1 interacts with mTOR complex 1 and enhances ribosome RNA transcription. FEBS Lett. 587 3303–3308 10.1016/j.febslet.2013.09.001 PubMed DOI
Kim S. G., Hoffman G. R., Poulogiannis G., Buel G. R., Jang Y. J., Lee K. W., et al. (2013). Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49 172–185 10.1016/j.molcel.2012.10.003 PubMed DOI PMC
Kim D. H., Sarbassov D. D., Ali S. M., King J. E., Latek R. R., Erdjument-Bromage H., et al. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110 163–175 10.1016/S0092-8674(02)00808-5 PubMed DOI
King T. H., Decatur W. A., Bertrand E., Maxwell E. S., Fournier M. J. (2001). A well-connected and conserved nucleoplasmic helicase is required for production of box C/D and H/ACA snoRNAs and localization of snoRNP proteins. Mol. Cell. Biol. 21 7731–7746 10.1128/MCB.21.22.7731-7746.2001 PubMed DOI PMC
Kiss-Laszlo Z., Henry Y., Bachellerie J. P., Caizergues-Ferrer M., Kiss T. (1996). Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85 1077–1088 10.1016/S0092-8674(00)81308-2 PubMed DOI
Li J., Soroka J., Buchner J. (2012). The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta 1823 624–635 10.1016/j.bbamcr.2011.09.003 PubMed DOI
Lopez-Perrote A., Munoz-Hernandez H., Gil D., Llorca O. (2012). Conformational transitions regulate the exposure of a DNA-binding domain in the RuvBL1-RuvBL2 complex. Nucleic Acids Res. 40 11086–11099 10.1093/nar/gks871 PubMed DOI PMC
Macario A. J., Conway de Macario E. (2005). Sick chaperones, cellular stress, and disease. N. Engl. J. Med. 353 1489-1501 10.1056/NEJMra050111. PubMed DOI
Machado-Pinilla R., Liger D., Leulliot N., Meier U. T. (2012). Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs. RNA 18 1833–1845 10.1261/rna.034942.112 PubMed DOI PMC
Matias P. M., Gorynia S., Donner P., Carrondo M. A. (2006). Crystal structure of the human AAA+ protein RuvBL1. J. Biol. Chem. 281 38918–38929 10.1074/jbc.M605625200 PubMed DOI
Mayer P., Harjung A., Breinig M., Fischer L., Ehemann V., Malz M., et al. (2012). Expression and therapeutic relevance of heat-shock protein 90 in pancreatic endocrine tumors. Endocr. Relat. Cancer 19 217–232 10.1530/ERC-11-0227 PubMed DOI
McKeegan K. S., Debieux C. M., Boulon S., Bertrand E., Watkins N. J. (2007). A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. Mol. Cell. Biol. 27 6782–6793 10.1128/MCB.01097 PubMed DOI PMC
McKeegan K. S., Debieux C. M., Watkins N. J. (2009). Evidence that the AAA+ proteins TIP48 and TIP49 bridge interactions between 15.5K and the related NOP56 and NOP58 proteins during box C/D snoRNP biogenesis. Mol. Cell Biol. 29 4971–4981 10.1128/MCB.00752 PubMed DOI PMC
McKinnon P. J. (2012). ATM and the molecular pathogenesis of ataxia telangiectasia. Annu. Rev. Pathol. 7 303–321 10.1146/annurev-pathol-011811-132509 PubMed DOI
McMahon S. B., Van Buskirk H. A., Dugan K. A., Copeland T. D., Cole M. D. (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94 363–374 10.1016/S0092-8674(00)81479-8 PubMed DOI
McMahon S. B., Wood M. A., Cole M. D. (2000). The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20 556–562 10.1128/MCB.20.2.556-562.2000 PubMed DOI PMC
Millson S. H., Vaughan C. K., Zhai C., Ali M. M., Panaretou B., Piper P. W., et al. (2008). Chaperone ligand-discrimination by the TPR-domain protein Tah1. Biochem. J. 413 261–268 10.1042/BJ20080105 PubMed DOI PMC
Miron-Garcia M. C., Garrido-Godino A. I., Garcia-Molinero V., Hernandez-Torres F., Rodriguez-Navarro S., Navarro F. (2013). The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS Genet 9:e1003297 10.1371/journal.pgen.1003297 PubMed DOI PMC
Murr R., Loizou J. I., Yang Y. G., Cuenin C., Li H., Wang Z. Q., et al. (2006). Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol. 8 91–99 10.1038/ncb1343 PubMed DOI
Murr R., Vaissiere T., Sawan C., Shukla V., Herceg Z. (2007). Orchestration of chromatin-based processes: mind the TRRAP. Oncogene 26 5358–5372 10.1038/sj.onc.1210605 PubMed DOI
Nam E. A., Cortez D. (2011). ATR signalling: more than meeting at the fork. Biochem. J. 436 527–536 10.1042/BJ20102162 PubMed DOI PMC
Nano N., Houry W. A. (2013). Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368 20110399 10.1098/rstb.2011.0399 PubMed DOI PMC
Neckers L., Workman P. (2012). Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res. 18 64–76 10.1158/1078-0432.CCR-11-1000 PubMed DOI PMC
Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V. (1999). AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9 27–43. PubMed
Newman D. R., Kuhn J. F., Shanab G. M., Maxwell E. S. (2000). Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription. RNA 6 861–879 10.1017/S1355838200992446 PubMed DOI PMC
Niewiarowski A., Bradley A. S., Gor J., Mckay A. R., Perkins S. J., Tsaneva I. R. (2010). Oligomeric assembly and interactions within the human RuvB-like RuvBL1 and RuvBL2 complexes. Biochem. J. 429 113–125 10.1042/BJ20100489 PubMed DOI
Niimi A., Chambers A. L., Downs J. A., Lehmann A. R. (2012). A role for chromatin remodellers in replication of damaged DNA. Nucleic Acids Res. 40 7393–7403 10.1093/nar/gks453 PubMed DOI PMC
Ogura T., Whiteheart S. W., Wilkinson A. J. (2004). Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. J. Struct. Biol. 146 106–112 10.1016/j.jsb.2003.11.008 PubMed DOI
Omran H., Kobayashi D., Olbrich H., Tsukahara T., Loges N. T., Hagiwara H., et al. (2008). Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456 611–616 10.1038/nature07471 PubMed DOI PMC
Osakabe A., Takahashi Y., Murakami H., Otawa K., Tachiwana H., Oma Y., et al. (2014). DNA binding properties of the actin-related protein Arp8 and its role in DNA repair. PLoS ONE 9:e108354 10.1371/journal.pone.0108354 PubMed DOI PMC
Paci A., Liu X. H., Huang H., Lim A., Houry W. A., Zhao R. (2012). The stability of the small nucleolar ribonucleoprotein (snoRNP) assembly protein Pih1 in Saccharomyces cerevisiae is modulated by its C terminus. J. Biol. Chem. 287 43205–43214 10.1074/jbc.M112.408849 PubMed DOI PMC
Pal M., Morgan M., Phelps S. E., Roe S. M., Parry-Morris S., Downs J. A., et al. (2014). Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 22 805–818 10.1016/j.str.2014.04.001 PubMed DOI PMC
Patel S., Latterich M. (1998). The AAA team: related ATPases with diverse functions. Trends Cell Biol. 8 65–71 10.1016/S0962-8924(97)01212-9 PubMed DOI
Petukhov M., Dagkessamanskaja A., Bommer M., Barrett T., Tsaneva I., Yakimov A., et al. (2012). Large-scale conformational flexibility determines the properties of AAA+ TIP49 ATPases. Structure 20 1321–1331 10.1016/j.str.2012.05.012 PubMed DOI
Pillai R. N., Ramalingam S. S. (2014). Heat shock protein 90 inhibitors in non-small-cell lung cancer. Curr. Opin. Oncol. 26 159–164 10.1097/CCO.0000000000000047 PubMed DOI
Prodromou C., Roe S. M., O’brien R., Ladbury J. E., Piper P. W., Pearl L. H. (1997). Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90 65–75 10.1016/S0092-8674(00)80314-1 PubMed DOI
Puri T., Wendler P., Sigala B., Saibil H., Tsaneva I. R. (2007). Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J. Mol. Biol. 366 179–192 10.1016/j.jmb.2006.11.030 PubMed DOI
Rajendra E., Garaycoechea J. I., Patel K. J., Passmore L. A. (2014). Abundance of the Fanconi anaemia core complex is regulated by the RuvBL1 and RuvBL2 AAA+ ATPases. Nucl. Acids Res. 42 13736–13748 10.1093/nar/gku1230 PubMed DOI PMC
Rao F., Cha J., Xu J., Xu R., Vandiver M. S., Tyagi R., et al. (2014). Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol. Cell 54 119–132 10.1016/j.molcel.2014.02.020 PubMed DOI PMC
Rendtlew Danielsen J. M., Larsen D. H., Schou K. B., Freire R., Falck J., Bartek J., et al. (2009). HCLK2 is required for activity of the DNA damage response kinase ATR. J. Biol. Chem. 284 4140–4147 10.1074/jbc.M808174200 PubMed DOI
Rosenbaum J., Baek S. H., Dutta A., Houry W. A., Huber O., Hupp T. R., et al. (2013). The emergence of the conserved AAA+ ATPases Pontin and Reptin on the signaling landscape. Sci. Signal. 6 mr1 10.1126/scisignal.2003906 PubMed DOI PMC
Saibil H. (2013). Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 14 630–642 10.1038/nrm3658 PubMed DOI PMC
Sarbassov D. D., Ali S. M., Kim D. H., Guertin D. A., Latek R. R., Erdjument-Bromage H., et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14 1296–1302 10.1016/j.cub.2004.06.054 PubMed DOI
Sasaki M., Nie L., Maki C. G. (2007). MDM2 binding induces a conformational change in p53 that is opposed by heat-shock protein 90 and precedes p53 proteasomal degradation. J. Biol. Chem. 282 14626–14634 10.1074/jbc.M610514200 PubMed DOI
Shen X., Ranallo R., Choi E., Wu C. (2003). Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12 147–155 10.1016/S1097-2765(03)00264-8 PubMed DOI
Smith C. M., Steitz J. A. (1997). Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 89 669–672 10.1016/S0092-8674(00)80247-0 PubMed DOI
Smith D. F. (2004). Tetratricopeptide repeat cochaperones in steroid receptor complexes. Cell Stress Chaperones 9 109–121 10.1379/CSC-31.1 PubMed DOI PMC
Smith D. M., Benaroudj N., Goldberg A. (2006). Proteasomes and their associated ATPases: a destructive combination. J. Struct. Biol. 156 72–83 10.1016/j.jsb.2006.04.012 PubMed DOI
Sun Y., Jiang X., Chen S., Fernandes N., Price B. D. (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. U.S.A. 102 13182–13187 10.1073/pnas.0504211102 PubMed DOI PMC
Takai H., Wang R. C., Takai K. K., Yang H., De Lange T. (2007). Tel2 regulates the stability of PI3K-related protein kinases. Cell 131 1248–1259 10.1016/j.cell.2007.10.052 PubMed DOI
Tarkar A., Loges N. T., Slagle C. E., Francis R., Dougherty G. W., Tamayo J. V., et al. (2013). DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat. Genet. 45 995–1003 10.1038/ng.2707 PubMed DOI PMC
Torreira E., Jha S., Lopez-Blanco J. R., Arias-Palomo E., Chacon P., Canas C., et al. (2008). Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes. Structure 16 1511–1520 10.1016/j.str.2008.08.009 PubMed DOI PMC
Trembley J. H., Chen Z., Unger G., Slaton J., Kren B. T., Van Waes C., et al. (2010). Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 36 187–195 10.1002/biof.96 PubMed DOI PMC
Tycowski K. T., Smith C. M., Shu M. D., Steitz J. A. (1996). A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proc. Natl. Acad. Sci. U.S.A. 93 14480–14485 10.1073/pnas.93.25.14480 PubMed DOI PMC
Venteicher A. S., Meng Z., Mason P. J., Veenstra T. D., Artandi S. E. (2008). Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132 945–957 10.1016/j.cell.2008.01.019 PubMed DOI PMC
Vousden K. H., Lu X. (2002). Live or let die: the cell’s response to p53. Nat. Rev. Cancer 2 594-604 10.1038/nrc864 PubMed DOI
Wachsberger P. R., Lawrence Y. R., Liu Y., Rice B., Feo N., Leiby B., et al. (2014). Hsp90 inhibition enhances PI-3 kinase inhibition and radiosensitivity in glioblastoma. J. Cancer Res. Clin. Oncol. 140 573–582 10.1007/s00432-014-1594-6 PubMed DOI PMC
Wullschleger S., Loewith R., Hall M. N. (2006). TOR signaling in growth and metabolism. Cell 124 471–484 10.1016/j.cell.2006.01.016 PubMed DOI
Yamashita A., Kashima I., Ohno S. (2005). The role of SMG-1 in nonsense-mediated mRNA decay. Biochim. Biophys. Acta 1754 305–315 10.1016/j.bbapap.2005.10.002 PubMed DOI
Yang P. K., Rotondo G., Porras T., Legrain P., Chanfreau G. (2002). The Shq1p.Naf1p complex is required for box H/ACA small nucleolar ribonucleoprotein particle biogenesis. J. Biol. Chem. 277 45235–45242 10.1074/jbc.M207669200 PubMed DOI
Yata K., Lloyd J., Maslen S., Bleuyard J. Y., Skehel M., Smerdon S. J., et al. (2012). Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol. Cell 45 371–383 10.1016/j.molcel.2011.12.028 PubMed DOI PMC
Zhai N., Zhao Z. L., Cheng M. B., Di Y. W., Yan H. X., Cao C. Y., et al. (2012). Human PIH1 associates with histone H4 to mediate the glucose-dependent enhancement of pre-rRNA synthesis. J. Mol. Cell Biol. 4 231–241 10.1093/jmcb/mjs003 PubMed DOI
Zhang Y., Chen J., Gurumurthy C. B., Kim J., Bhat I., Gao Q., et al. (2006). The human orthologue of Drosophila ecdysoneless protein interacts with p53 and regulates its function. Cancer Res. 66 7167–7175 10.1158/0008-5472.CAN-06-0722. PubMed DOI
Zhao R., Davey M., Hsu Y. C., Kaplanek P., Tong A., Parsons A. B., et al. (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120 715–727 10.1016/j.cell.2004.12.024 PubMed DOI
Zhao R., Kakihara Y., Gribun A., Huen J., Yang G., Khanna M., et al. (2008). Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J. Cell Biol. 180 563–578 10.1083/jcb.200709061 PubMed DOI PMC
Zhou B. B., Elledge S. J. (2000). The DNA damage response: putting checkpoints in perspective. Nature 408 433–439 10.1038/35044005 PubMed DOI