Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)

. 2015 Jun ; 32 () : 113-23. [epub] 20150312

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid25772204

Grantová podpora
1R15AI067284-01A1 NIAID NIH HHS - United States
R15 AI067284 NIAID NIH HHS - United States
P30 GM103332 NIGMS NIH HHS - United States
P20 RR015566 NCRR NIH HHS - United States
2P20 RR015566 NCRR NIH HHS - United States

Odkazy

PubMed 25772204
PubMed Central PMC4417453
DOI 10.1016/j.meegid.2015.03.003
PII: S1567-1348(15)00072-6
Knihovny.cz E-zdroje

Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships.

Zobrazit více v PubMed

Arrowood MJ, Donaldson K. Improved purification methods for calf-derived Cryptosporidium parvum oocysts using discontinuous sucrose and cesium chloride gradients. J Eukaryot Microbiol. 1996;43:89S. PubMed

Barthelemy RM, Grino M, Pontarotti P, Casanova JP, Faure E. The differential expression of ribosomal 18S RNA paralog genes from the chaetognath Spadella cephaloptera. Cell Mol Biol Lett. 2007;12:573–583. PubMed PMC

Bhoora R, Franssen L, Oosthuizen MC, Guthrie AJ, Zweygarth E, Penzhorn BL, Jongejan F, Collins NE. Sequence heterogeneity in the 18S rRNA gene within Theileria equi and Babesia caballi from horses in South Africa. Vet Parasitol. 2009;159:112–120. PubMed

Careau V, Réale D, Garant D, Speakman J, Humphries M. Stress-induced rise in body temperature is repeatable in free-ranging Eastern chipmunks (Tamias striatus) J Comp Physiol [B] 2012;182:403–414. PubMed

El-Sherry S, Ogedengbe ME, Hafeez MA, Barta JR. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification. Int J Parasitol. 2013;43:679–685. PubMed

Feng Y, Alderisio KA, Yang W, Blancero LA, Kuhne WG, Nadareski CA, Reid M, Xiao L. Cryptosporidium genotypes in wildlife from a New York watershed. Appl Environ Microbiol. 2007;73:6475–6483. PubMed PMC

Gunderson JH, Sogin ML, Wollett G, Hollingdale M, de la Cruz VF, Waters AP, McCutchan TF. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science. 1987;238:933–937. PubMed

Hill NJ, Deane EM, Power ML. Prevalence and genetic characterization of Cryptosporidium isolates from common brushtail possums (Trichosurus vulpecula) adapted to urban settings. Appl Environ Microbiol. 2008;74:5549–5555. PubMed PMC

Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. Fast folding and comparison of RNA secondary structures. Monatsh Chem. 1994;125:167–188.

Husmeier D, Wright F, Milne I. Detecting interspecific recombination with a pruned probabilistic divergence measure. Bioinformatics. 2005;21:1797–1806. PubMed

Ikarashi M, Fukuda Y, Honma H, Kasai K, Kaneta Y, Nakai Y. First description of heterogeneity in 18S rRNA genes in the haploid genome of Cryptosporidium andersoni Kawatabi type. Vet Parasitol. 2013;196:220–224. PubMed

Jiang J, Alderisio KA, Xiao L. Distribution of Cryptosporidium genotypes in storm event water samples from three watersheds in New York. Appl Environ Microbiol. 2005;71:4446–4454. PubMed PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. PubMed PMC

Krieger J, Fuerst PA. Evidence of multiple alleles in the nuclear 18S ribosomal RNA gene in sturgeon (Family: Acipenseridae) J Appl Ichthyol. 2002;18:290–297.

Kváč M, McEvoy J, Stenger B, Clark M. Cryptosporidiosis in other vertebrates. In: Cacciò SM, Widmer G, editors. Cryptosporidium: parasite and disease. Springer Vienna; Vienna, Austria: 2014. pp. 237–323.

Landry-Cuerrier M, Munro D, Thomas DW, Humphries MM. Climate and resource determinants of fundamental and realized metabolic niches of hibernating chipmunks. Ecology. 2008;89:3306–3316. PubMed

Le Blancq SM, Khramtsov NV, Zamani F, Upton SJ, Wu TW. Ribosomal RNA gene organization in Cryptosporidium parvum. Mol Biochem Parasitol. 1997;90:463–478. PubMed

McCutchan TF, de la Cruz VF, Lal AA, Gunderson JH, Elwood HJ, Sogin ML. Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum. Mol Biochem Parasitol. 1988;28:63–68. PubMed

McCutchan TF, Li J, McConkey GA, Rogers MJ, Waters AP. The cytoplasmic ribosomal RNAs of Plasmodium spp. Parasitol Today. 1995;11:134–138. PubMed

Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F. TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics. 2009;25:126–127. PubMed PMC

Morgan UM, Monis PT, Xiao L, Limor J, Sulaiman I, Raidal S, O’Donoghue P, Gasser R, Murray A, Fayer R, Blagburn BL, Lal AA, Thompson RC. Molecular and phylogenetic characterisation of Cryptosporidium from birds. Int J Parasitol. 2001;31:289–296. PubMed

Munro D, Thomas DW, Humphries MM. Torpor patterns of hibernating eastern chipmunks Tamias striatus vary in response to the size and fatty acid composition of food hoards. J Anim Ecol. 2005;74:692–700.

Nawrocki EP. PhD thesis. Washington University in Saint Louis, School of Medicine; 2009. Structural alignment and RNA homology search and alignment using covariance models.

Ohno S. Evolution by gene duplication. Springer; New York: 1970.

Peng MM, Meshnick SR, Cunliffe NA, Thindwa BD, Hart CA, Broadhead RL, Xiao L. Molecular epidemiology of cryptosporidiosis in children in Malawi. J Eukaryot Microbiol. 2003;50(Suppl):557–559. PubMed

Qari SH, Goldman IF, Pieniazek NJ, Collins WE, Lal AA. Blood and sporozoite stage-specific small subunit ribosomal RNA-encoding genes of the human malaria parasite Plasmodium vivax. Gene. 1994;150:43–49. PubMed

Reddy GR, Chakrabarti D, Yowell CA, Dame JB. Sequence microheterogeneity of the three small subunit ribosomal RNA genes of Babesia bigemina: expression in erythrocyte culture. Nucleic Acids Res. 1991;19:3641–3645. PubMed PMC

Rooney AP. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in apicomplexans. Mol Biol Evol. 2004;21:1704–1711. PubMed

Ryan U, Fayer R, Xiao L. Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology. 2014;141:1667–1685. PubMed

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425. PubMed

Santín M, Fayer R. Intragenotypic variations in the Cryptosporidium sp cervine genotype from sheep with implications for public health. J Parasitol. 2007;93:668–672. PubMed

da Sevá AP, Funada MR, Richtzenhain L, Guimarães MB, Souza SeO, Allegretti L, Sinhorini JA, Duarte VV, Soares RM. Genotyping of Cryptosporidium spp. from free-living wild birds from Brazil. Vet Parasitol. 2011;175:27–32. PubMed

Snyder DP. Tamias striatus. Mammalian Species. 1982;168:1–8.

Sulaiman IM, Lal AA, Xiao L. Molecular phylogeny and evolutionary relationships of Cryptosporidium parasites at the actin locus. J Parasitol. 2002;88:388–394. PubMed

Sulaiman IM, Morgan UM, Thompson RC, Lal AA, Xiao L. Phylogenetic relationships of Cryptosporidium parasites based on the 70-kilodalton heat shock protein (HSP70) gene. Appl Environ Microbiol. 2000;66:2385–2391. PubMed PMC

Tajima F. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics. 1993;135:599–607. PubMed PMC

Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol. 1992;9:678–687. PubMed

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729. PubMed PMC

Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM, editor. Some mathematical questions in biology: DNA sequence analysis (lectures on mathematics in the life sciences) American Mathematical Society; New York: 1986. pp. 57–86.

Varriale A, Torelli G, Bernardi G. Compositional properties and thermal adaptation of 18S rRNA in vertebrates. RNA. 2008;14:1492–1500. PubMed PMC

Vrba V, Poplstein M, Pakandl M. The discovery of the two types of small subunit ribosomal RNA gene in Eimeria mitis contests the existence of E. mivati as an independent species. Vet Parasitol. 2011;183:47–53. PubMed

Wang LCH, Hudson JW. Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus. Comp Biochem Physiol A. 1971;38:59–90. PubMed

Widmer G, Sullivan S. Genomics and population biology of Cryptosporidium species. Parasite Immunol. 2012;34:61–71. PubMed PMC

Wuyts J, Van de Peer Y, Winkelmans T, De Wachter R. The European database on small subunit ribosomal RNA. Nucleic Acids Res. 2002;30:183–185. PubMed PMC

Xiao L, Limor JR, Li L, Morgan U, Thompson RC, Lal AA. Presence of heterogeneous copies of the small subunit rRNA gene in Cryptosporidium parvum human and marsupial genotypes and Cryptosporidium felis. J Eukaryot Microbiol. 1999;46:44S–45S. PubMed

Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A. Molecular characterization of Cryptosporidium oocysts in samples of raw surface water and wastewater. Appl Environ Microbiol. 2001;67:1097–1101. PubMed PMC

Yang W, Chen P, Villegas EN, Landy RB, Kanetsky C, Cama V, Dearen T, Schultz CL, Orndorff KG, Prelewicz GJ, Brown MH, Young KR, Xiao L. Cryptosporidium source tracking in the Potomac River watershed. Appl Environ Microbiol. 2008;74:6495–6504. PubMed PMC

Zobrazit více v PubMed

GENBANK
KC954211, KC954212, KC954213, KC954214, KC954215, KC954216, KC954217, KC954218, KC954219, KC954220, KC954221, KC954222, KC954223, KC954224, KC954225, KC954226, KC954227, KC954228, KC954229, KC954230, KC954231, KC954232, KC954233, KC954234, KC954235, KC954236, KC954237, KC954238, KC954239, KC954240, KC954241, KC954242, KC954243, KC954244, KC954245, KC954246, KC954247, KC954248, KC954249, KC954250, KC954251, KC954252, KC954253, KC954254, KC954255, KC954256, KC954257, KC954258, KC954259, KC954260, KC954261, KC954262, KC954263, KC954264, KC954265, KC954266, KC954267, KC954268, KC954269, KJ816864, KJ816865, KJ816866, KJ816867, KJ816868, KJ816869, KJ816870, KJ816871

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...