Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: controlling the species turnover effect
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25774532
PubMed Central
PMC4361585
DOI
10.1371/journal.pone.0118876
PII: PONE-D-13-54690
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- druhová specificita MeSH
- ekosystém MeSH
- genetická variace MeSH
- interakce genů a prostředí * MeSH
- nadmořská výška MeSH
- pastviny * MeSH
- podnebí MeSH
- rostlinné geny MeSH
- rostliny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středomoří MeSH
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m-2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.
Zobrazit více v PubMed
HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM. Rethinking Community Assembly through the Lens of Coexistence Theory. Annual Review of Ecology, Evolution, and Systematics. 2012; 43: 227–248.
Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. The influence of functional diversity and composition on ecosystem processes. Science. 1997; 277: 1300–1302.
Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science. 2006; 313: 966–968. PubMed
Ackerly DD, Cornwell W. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol Lett. 2007; 10: 135–145. PubMed
Körner C. The use of ‘altitude’ in ecological research. Trends Ecol Evol. 2007; 22: 569–574. PubMed
Fajardo A, Piper FI. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytol. 2011; 189: 259–271. 10.1111/j.1469-8137.2010.03468.x PubMed DOI
Scheepens J, Frei ES, Stöcklin J. Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. Oecologia. 2010; 164: 141–150. 10.1007/s00442-010-1650-0 PubMed DOI
Milla R, Giménez-Benavides L, Escudero A, Reich PB. Intra- and interspecific performance in growth and reproduction increase with altitude: a case study with two Saxifraga species from northern Spain. Funct Ecol. 2009; 23: 111–118.
Angert AL. Growth and leaf physiology of monkeyflowers with different altitude ranges. Oecologia. 2006; 148: 183–194. PubMed
Woodward F. The significance of interspecific differences in specific leaf area to the growth of selected herbaceous species from different altitudes. New Phytol. 1983; 95: 313–323.
Korner C, Diemer M. In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct Ecol. 1987: 179–194.
Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, et al. Intraspecific functional variability: extent, structure and sources of variation. J Ecol. 2010; 98: 604–613.
Auger S, Shipley B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J Veg Sci. 2012; 24: 419–428.
Lepš J, de Bello F, Šmilauer P, Doležal J. Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography. 2011; 34: 856–863.
Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C. When and how should intraspecific variability be considered in trait-based plant ecology? Perspect Plant Ecol Evol Syst. 2011; 13: 217–225.
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, et al. Let the concept of trait be functional! Oikos. 2007; 116: 882–892.
de Bello F, Lavorel S, Albert CH, Thuiller W, Grigulis K, Dolezal J, et al. Quantifying the relevance of intraspecific trait variability for functional diversity. Methods in Ecology and Evolution. 2011; 2: 163–174.
Petchey OL, Gaston KJ. Functional diversity (FD), species richness and community composition. Ecol Lett. 2002; 5: 402–411.
Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct Ecol. 2010; 24: 1192–1201.
Jung V, Violle C, Mondy C, Hoffmann L, Muller S. Intraspecific variability and trait-based community assembly. J Ecol. 2010; 98: 1134–1140.
Messier J, McGill BJ, Lechowicz MJ. How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett. 2010; 13: 838–848. 10.1111/j.1461-0248.2010.01476.x PubMed DOI
Jung V, Albert CH, Violle C, Kunstler G, Loucougaray G, Spiegelberger T. Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. J Ecol. 2014; 102: 45–53.
Roche P, Díaz-Burlinson N, Gachet S. Congruency analysis of species ranking based on leaf traits: which traits are the more reliable? Plant Ecol. 2004; 174: 37–48.
Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E. Evidence for a ‘plant community economics spectrum’driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol. 2012; 100: 1315–1327.
Diaz S, Cabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale. J Veg Sci. 1998; 9: 113–122.
Keddy PA. Assembly and response rules: two goals for predictive community ecology. J Veg Sci. 1992; 3: 157–164.
Gandullo J. Ensayo de evaluación cuantitativa de la insolación en función de la orientación y de la pendiente del terreno. Anales INIA/Ser Recursos Naturales. 1974; 1: 95–107.
Pérez RSA. El coeficiente de insolación según el método de Gandullo (1974): aplicación al archipiélago canario: utilidad práctica del coeficiente para una clasificación de vegetación. Ería. 1997; 43: 227–237.
Anderson JM, Ingram J. Tropical soil biology and fertility. Wallingford: CAB International; 1993.
Cornelissen J, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich D, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot. 2003; 51: 335–380.
Vile D, Garnier E, Shipley B, Laurent G, Navas M-L, Roumet C, et al. Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann Bot. 2005; 96: 1129–1136. PubMed PMC
Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. Stable isotopes in plant ecology. Annu Rev Ecol Syst. 2002; 33: 507–559.
Chambers JM, Freeny AE, Heiberger RM. Analysis of variance; designed experiments In: Chambers JM and Hastie TJ, editors. Statistical Models in S. Florida: Chapman and Hall/CRC; 1992. pp. 145–194.
Rao CR. Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol. 1982; 21: 24–43.
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2010.
Cornwell WK, Ackerly DD. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr. 2009; 79: 109–126.
Körner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia. 1998; 115: 445–459. PubMed
Shi P, Körner C, Hoch G. End of season carbon supply status of woody species near the treeline in western China. Basic Appl Ecol. 2006; 7: 370–377.
Codignola A, Maffei M, Fusconi A, Fieschi M. Leaf anatomy of alpine plants as related to altitudinal stress. Nord J Bot. 1987; 7: 673–685.
Turunen M, Latola K. UV-B radiation and acclimation in timberline plants. Environ Pollut. 2005; 137: 390–403. PubMed
Hsiao TC, Silk WK, Jing J. Leaf growth and water deficits: biophysical effects In: Baker NR, Davies WJ and Ong CK, editors. Control of leaf growth. Cambridge: Cambridge University Press; 1985. pp. 239–266.
Huber E, Wanek W, Gottfried M, Pauli H, Schweiger P, Arndt SK, et al. Shift in soil—plant nitrogen dynamics of an alpine—nival ecotone. Plant Soil. 2007; 301: 65–76.
Kahmen A, Wanek W, Buchmann N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia. 2008; 156: 861–870. 10.1007/s00442-008-1028-8 PubMed DOI PMC
Högberg P. Tansley Review No. 95 15N natural abundance in soil-plant systems. New Phytol. 1997; 137: 179–203. PubMed
Robinson D. δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol. 2001; 16: 153–162. PubMed
Kichenin E, Wardle DA, Peltzer DA, Morse CW, Freschet GT. Contrasting effects of plant inter-and intraspecific variation on community-level trait measures along an environmental gradient. Funct Ecol. 2013; 27: 1254–1261.
Prentice IC, Meng T, Wang H, Harrison SP, Ni J, Wang G. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytol. 2011; 190: 169–180. 10.1111/j.1469-8137.2010.03579.x PubMed DOI
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 2012; 193: 30–50. 10.1111/j.1469-8137.2011.03952.x PubMed DOI
Körner C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Berlin: Springer; 2003.
Gutiérrez-Girón A, Díaz-Pinés E, Rubio A, Gavilán RG. Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma. 2015; 237: 1–8.
Rodrigo A, Recous S, Neel C, Mary B. Modelling temperature and moisture effects on C—N transformations in soils: comparison of nine models. Ecol Model. 1997; 102: 325–339.
Gutiérrez-Girón A, Gavilán R. Plant functional strategies and environmental constraints in Mediterranean high mountain grasslands in central Spain. Plant Ecology & Diversity. 2013; 6: 435–446.
Grassein F, Till-Bottraud I, Lavorel S. Plant resource-use strategies: the importance of phenotypic plasticity in response to a productivity gradient for two subalpine species. Ann Bot. 2010; 106: 637–645. 10.1093/aob/mcq154 PubMed DOI PMC
García-Fernández A, Segarra-Moragues JG, Widmer A, Escudero A, Iriondo JM. Unravelling genetics at the top: mountain islands or isolated belts? Ann Bot. 2012; 110: 1221–1232. 10.1093/aob/mcs195 PubMed DOI PMC
García-Fernández A, Iriondo JM, Escudero A, Fuertes-Aguilar J, Nieto-Feliner G. Genetic patterns of habitat fragmentation and past climate change effects in the Mediterranean high-mountain plant Armeria caespitosa (Plumbaginaceae). Am J Bot. 2013; 100: 1641–1650. 10.3732/ajb.1200653 PubMed DOI
Gottfried M, Pauli H, Grabherr G. Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arct Alp Res. 1998; 30: 207–221.
Spasojevic MJ, Suding KN. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J Ecol. 2012; 100: 652–661.
de Bello F, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, et al. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography. 2013; 36: 393–402.
Whittaker RH. Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr. 1960; 30: 279–338.
Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol. 2012; 27: 244–252. 10.1016/j.tree.2011.11.014 PubMed DOI
Callaway RM, Brooker R, Choler P, Kikvidze Z, Lortie CJ, Michalet R, et al. Positive interactions among alpine plants increase with stress. Nature. 2002; 417: 844–848. PubMed
Cavieres LA, Badano EI, Sierra-Almeida A, Gómez-González S, Molina-Montenegro MA. Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytol. 2006; 169: 59–69. PubMed
Wright IJ, Reich P, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol. 2001; 15: 423–434.
Gross N, Börger L, Soriano-Morales SI, Le Bagousse-Pinguet Y, Quero JL, García-Gómez M, et al. Uncovering multiscale effects of aridity and biotic interactions on the functional structure of Mediterranean shrublands. J Ecol. 2013; 101: 637–649.
Mayfield MM and Levine JM. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett. 2010; 13: 1085–1093. 10.1111/j.1461-0248.2010.01509.x PubMed DOI