Differential regulation of proinflammatory mediators following LPS- and ATP-induced activation of monocytes from patients with antiphospholipid syndrome

. 2015 ; 2015 () : 292851. [epub] 20150215

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25785264

Antiphospholipid syndrome (APS) is an acquired autoimmune disorder characterized by recurrent thrombosis and pregnancy morbidity in association with the presence of antiphospholipid antibodies. Growing evidence supports the involvement of monocytes in APS pathogenesis. Inflammatory activation of monocytes promotes thrombus formation and other APS complications. However, mechanisms underlying their activation are poorly investigated. We aimed to determine transcriptional activity of monocytes after exposing them to low concentrations of lipopolysaccharide (LPS) and LPS + adenosine triphosphate (ATP) using comparative qRT-PCR. The results showed that LPS significantly increased transcriptional levels of TLR2, IL-23, CCL2, CXCL10, IL-1β, and IL-6 in APS cells, while, in cells from healthy donors, LPS resulted in IL-6 and STAT3 elevated mRNAs. Double stimulation of the cells resulted in decreased mRNA levels of NLRP3 in monocytes isolated from healthy donors and CCL2, IL-1β in APS cells. By contrast, TLR2 mRNAs were elevated in both investigated groups after culture of the cells with LPS + ATP. Thus, the findings indicate increased sensitivity of APS cells to LPS that may contribute to thrombus formation and enhance development or progression of autoimmune processes. Low concentrations of ATP diminish LPS-induced inflammatory state of APS monocytes which might be a potential mechanism which regulates inflammatory state of the cells.

Zobrazit více v PubMed

de Jesus G. R., Agmon-Levin N., Andrade C. A., et al. 14th International Congress on Antiphospholipid Antibodies Task Force report on obstetric antiphospholipid syndrome. Autoimmunity Reviews. 2014;13(8):795–813. doi: 10.1016/j.autrev.2014.02.003. PubMed DOI

Gris J. C., Bouvier S. Antiphospholipid syndrome: looking for a refocusing. Thrombosis Research. 2013;131(supplement 1):S28–S31. doi: 10.1016/s0049-3848(13)70016-1. PubMed DOI

Raschi E., Testoni C., Bosisio D., et al. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood. 2003;101(9):3495–3500. doi: 10.1182/blood-2002-08-2349. PubMed DOI

Zhang J., Fu S., Sun S., Li Z., Guo B. Inflammasome activation has an important role in the development of spontaneous colitis. Mucosal Immunology. 2014;7(5):1139–1150. doi: 10.1038/mi.2014.1. PubMed DOI PMC

Kumar V., Ali S. R., Konrad S., et al. Cell-derived anaphylatoxins as key mediators of antibody-dependent type II autoimmunity in mice. The Journal of Clinical Investigation. 2006;116(2):512–520. doi: 10.1172/jci25536. PubMed DOI PMC

López-Pedrera C., Buendía P., Cuadrado M. J., et al. Antiphospholipid antibodies from patients with the antiphospholipid syndrome induce monocyte tissue factor expression through the simultaneous activation of NF-κB/Rel proteins via the p38 mitogen-activated protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis & Rheumatism. 2006;54(1):301–311. doi: 10.1002/art.21549. PubMed DOI

Ware Branch D., Rodgers G. M. Induction of endothelial cell tissue factor activity by sera from patients with antiphospholipid syndrome: a possible mechanism of thrombosis. The American Journal of Obstetrics and Gynecology. 1993;168(1):206–210. doi: 10.1016/s0002-9378(12)90915-1. PubMed DOI

Reverter J.-C., Tàssies D., Font J., et al. Effects of human monoclonal anticardiolipin antibodies on platelet function and on tissue factor expression on monocytes. Arthritis & Rheumatism. 1998;41(8):1420–1427. doi: 10.1002/1529-0131(199808)41:860;1420::aid-art1162;3.0.co;2-u. PubMed DOI

Kornberg A., Blank M., Kaufman S., Shoenfeld Y. Induction of tissue factor-like activity in monocytes by anti-cardiolipin antibodies. Journal of Immunology. 1994;153(3):1328–1332. PubMed

Cuadrado M. J., López-Pedrera C., Khamashta M. A., et al. Thrombosis in primary antiphospholipid syndrome: a pivotal role for monocyte tissue factor expression. Arthritis and Rheumatism. 1997;40(5):834–841. doi: 10.1002/art.1780400509. PubMed DOI

Amengual O., Atsumi T., Khamashta M. A., Hughes G. R. V. The role of the tissue factor pathway in the hypercoagulable state in patients with the antiphospholipid syndrome. Thrombosis and Haemostasis. 1998;79(2):276–281. PubMed

Forastiero R. R., Martinuzzo M. E., De Larrañaga G. F. Circulating levels of tissue factor and proinflammatory cytokines in patients with primary antiphospholipid syndrome or leprosy related antiphospholipid antibodies. Lupus. 2005;14(2):129–136. doi: 10.1191/0961203305lu2048oa. PubMed DOI

Kuwana M. Beta2-glycoprotein I: antiphospholipid syndrome and T-cell reactivity. Thrombosis Research. 2004;114(5-6):347–355. doi: 10.1016/j.thromres.2004.06.029. PubMed DOI

Solbach W., Moll H., Röllinghoff M. Lymphocytes play the music but the macrophage calls the tune. Immunology Today. 1991;12(1):4–6. doi: 10.1016/0167-5699(91)90103-z. PubMed DOI

Serbina N. V., Jia T., Hohl T. M., Pamer E. G. Monocyte-mediated defense against microbial pathogens. Annual Review of Immunology. 2008;26:421–452. doi: 10.1146/annurev.immunol.26.021607.090326. PubMed DOI PMC

Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi: 10.1016/j.cell.2010.01.022. PubMed DOI

Janeway C. A., Jr., Medzhitov R. Innate immune recognition. Annual Review of Immunology. 2002;20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359. PubMed DOI

Dinarello C. A. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. International Reviews of Immunology. 1998;16(5-6):457–499. doi: 10.3109/08830189809043005. PubMed DOI

Rubartelli A., Cozzolino F., Talio M., Sitia R. A novel secretory pathway for interleukin-1β, a protein lacking a signal sequence. EMBO Journal. 1990;9(5):1503–1510. PubMed PMC

Griffiths R. J., Stam E. J., Downs J. T., Otterness I. G. ATP induces the release of IL-1 from LPS-primed cells in vivo. Journal of Immunology. 1995;154(6):2821–2828. PubMed

Laliberte R. E., Perregaux D. G., McNiff P., Gabel C. A. Human monocyte ATP-induced IL-1β posttranslational processing is a dynamic process dependent on in vitro growth conditions. Journal of Leukocyte Biology. 1997;62(2):227–239. PubMed

Martinon F., Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death & Differentiation. 2007;14(1):10–22. doi: 10.1038/sj.cdd.4402038. PubMed DOI

Martinon F., Mayor A., Tschopp J. The inflammasomes: guardians of the body. Annual Review of Immunology. 2009;27:229–265. doi: 10.1146/annurev.immunol.021908.132715. PubMed DOI

Levandowski C. B., Mailloux C. M., Ferrara T. M., et al. NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1β processing via the NLRP1 inflammasome. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(8):2952–2956. doi: 10.1073/pnas.1222808110. PubMed DOI PMC

Ames P. R. J., Antinolfi I., Ciampa A., et al. Primary antiphospholipid syndrome: a low-grade auto-inflammatory disease? Rheumatology. 2008;47(12):1832–1837. doi: 10.1093/rheumatology/ken382. PubMed DOI

Wahl L. M., Wahl S. M., Smythies L. E., Smith P. D. Current Protocols in Immunology. chapter 7:unit 7.6A. 2006. Isolation of human monocyte populations. PubMed DOI

Ercolini A. M., Miller S. D. The role of infections in autoimmune disease. Clinical and Experimental Immunology. 2009;155(1):1–15. doi: 10.1111/j.1365-2249.2008.03834.x. PubMed DOI PMC

Cervera R., Asherson R. A., Acevedo M. L., et al. Antiphospholipid syndrome associated with infections: clinical and microbiological characteristics of 100 patients. Annals of the Rheumatic Diseases. 2004;63(10):1312–1317. doi: 10.1136/ard.2003.014175. PubMed DOI PMC

Sfriso P., Ghirardello A., Botsios C., et al. Infections and autoimmunity: the multifaceted relationship. Journal of Leukocyte Biology. 2010;87(3):385–395. doi: 10.1189/jlb.0709517. PubMed DOI

Iwasaki A., Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327(5963):291–295. doi: 10.1126/science.1183021. PubMed DOI PMC

Hoebe K., Janssen E., Beutler B. The interface between innate and adaptive immunity. Nature Immunology. 2004;5(10):971–974. doi: 10.1038/ni1004-971. PubMed DOI

Nicholson L. B., Raveney B. J. E., Munder M. Monocyte dependent regulation of autoimmune inflammation. Current Molecular Medicine. 2009;9(1):23–29. doi: 10.2174/156652409787314499. PubMed DOI

Fox E. A., Kahn S. R. The relationship between inflammation and venous thrombosis. A systematic review of clinical studies. Thrombosis and Haemostasis. 2005;94(2):362–365. doi: 10.1160/th05-04-0266. PubMed DOI

Shantsila E., Lip G. Y. H. The role of monocytes in thrombotic disorders: insights from tissue factor, monocyte-platelet aggregates and novel mechanisms. Thrombosis and Haemostasis. 2009;102(5):916–924. doi: 10.1160/th09-01-0023. PubMed DOI

von Brühl M.-L., Stark K., Steinhart A., et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. The Journal of Experimental Medicine. 2012;209(4):819–835. doi: 10.1084/jem.20112322. PubMed DOI PMC

Korn T., Bettelli E., Oukka M., Kuchroo V. K. IL-17 and Th17 cells. Annual Review of Immunology. 2009;27(1):485–517. doi: 10.1146/annurev.immunol.021908.132710. PubMed DOI

Evans H. G., Gullick N. J., Kelly S., et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(15):6232–6237. doi: 10.1073/pnas.0808144106. PubMed DOI PMC

Afzali B., Lombardi G., Lechler R. I., Lord G. M. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clinical and Experimental Immunology. 2007;148(1):32–46. doi: 10.1111/j.1365-2249.2007.03356.x. PubMed DOI PMC

Perregaux D., Gabel C. A. Interleukin-1beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. The Journal of Biological Chemistry. 1994;269(21):15195–15203. PubMed

Bodin P., Burnstock G. Increased release of ATP from endothelial cells during acute inflammation. Inflammation Research. 1998;47(8):351–354. doi: 10.1007/s000110050341. PubMed DOI

Mariathasan S., Weiss D. S., Newton K., et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–232. doi: 10.1038/nature04515. PubMed DOI

Bours M. J. L., Swennen E. L. R., di Virgilio F., Cronstein B. N., Dagnelie P. C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacology and Therapeutics. 2006;112(2):358–404. doi: 10.1016/j.pharmthera.2005.04.013. PubMed DOI

Rizzo R., Ferrari D., Melchiorri L., et al. Extracellular ATP acting at the P2X7 receptor inhibits secretion of soluble HLA-G from human monocytes. Journal of Immunology. 2009;183(7):4302–4311. doi: 10.4049/jimmunol.0804265. PubMed DOI

Swennen E. L. R., Bast A., Dagnelie P. C. Immunoregulatory effects of adenosine 5′-triphosphate on cytokine release from stimulated whole blood. European Journal of Immunology. 2005;35(3):852–858. doi: 10.1002/eji.200425423. PubMed DOI

Leo Bours M. J., Dagnelie P. C., Giuliani A. L., Wesselius A., Di Virgilio F. P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Frontiers in Bioscience—Scholar. 2011;3(4):1443–1456. PubMed

Qu Y., Franchi L., Nunez G., Dubyak G. R. Nonclassical IL-1β secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. Journal of Immunology. 2007;179(3):1913–1925. doi: 10.4049/jimmunol.179.3.1913. PubMed DOI

La Sala A., Ferrari D., Di Virgilio F., Idzko M., Norgauer J., Girolomoni G. Alerting and tuning the immune response by extracellular nucleotides. Journal of Leukocyte Biology. 2003;73(3):339–343. doi: 10.1189/jlb.0802418. PubMed DOI

De Waal Malefyt R., Haanen J., Spits H., et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. The Journal of Experimental Medicine. 1991;174(4):915–924. doi: 10.1084/jem.174.4.915. PubMed DOI PMC

Williams L., Jarai G., Smith A., Finan P. IL-10 expression profiling in human monocytes. Journal of Leukocyte Biology. 2002;72(4):800–809. PubMed

Zhang J., McCrae K. R. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-β 2 glycoprotein I antibodies. Blood. 2005;105(5):1964–1969. doi: 10.1182/blood-2004-05-1708. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...