Anti-domain 1 β2 glycoprotein antibodies increase expression of tissue factor on monocytes and activate NK Cells and CD8+ cells in vitro
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SCS 18T-1F396
State Committee of Science
MZ CR VES15-28659A, in part IGA UP_2018_016
Ministerstvo Zdravotnictví Ceské Republiky
MH CZ - DRO (FNOL, 00098892).
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
32127041
PubMed Central
PMC7065342
DOI
10.1186/s13317-020-00128-y
PII: 10.1186/s13317-020-00128-y
Knihovny.cz E-zdroje
- Klíčová slova
- Anti-domain 1 β2GPI, Antiphospholipid antibodies, B cells, Monocytes, NK cells, Neutrophils, Plasma pool, Primary immune cells, T cells,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: β2-Glycoprotein I (β2GPI) represents the major antigenic target for antiphospholipid antibodies (aPL), with domain 1 (D1) being identified as a risk factor for thrombosis and pregnancy complications in APS. We aimed to analyse the ability of aPL, and particularly anti-D1 β2GPI, to stimulate prothrombotic and proinflammatory activity of immune cells in vitro. METHODS: Peripheral blood mononuclear cells (PBMCs) from 11 healthy individuals were incubated with: (1) "anti-D1(+)"-pooled plasma derived from patients suspected of having APS contained anticardiolipin antibodies (aCL), lupus anticoagulant (LA), anti-β2GPI and anti-D1 β2GPI; (2) "anti-D1(-)"-pooled plasma from patients suspected of having APS contained aCL, LA, anti-β2GPI, and negative for anti-D1 β2GPI; (3) "seronegative"-negative for aPL. RESULTS: The presence of anti-D1(+) and anti-D1(-) plasma resulted in increased HLA-DR and CD11b on monocytes. While only anti-D1(+) plasma markedly increased the percentage and median fluorescence intensity (MFI) of CD142 (tissue factor, TF) on monocytes in comparison with those cultured with anti-D1(-) and seronegative plasma. Anti-D1(+) plasma resulted in increased percentage and MFI of activation marker CD69 on NK and T cytotoxic cells. Expression of IgG receptor FcγRIII(CD16) on monocytes and NK cells was down-regulated by the anti-D1(+) plasma. CONCLUSIONS: Taking together, our study shows the ability of patient-derived aPL to induce immune cell activation and TF expression on monocytes. For the first time, we demonstrated the influence of anti-D1 β2GPI on the activation status of monocytes, NK and cytotoxic T cells. Our findings further support a crucial role of D1 epitope in the promotion of thrombosis and obstetrical complications in APS.
Zobrazit více v PubMed
Gómez-Puerta JA, Cervera R. Diagnosis and classification of the antiphospholipid syndrome. J Autoimmun. 2014;48–49:20–25. doi: 10.1016/j.jaut.2014.01.006. PubMed DOI
Shoenfeld Y, Twig G, Katz U, Sherer Y. Autoantibody explosion in antiphospholipid syndrome. J Autoimmun. 2008;30:74–83. doi: 10.1016/j.jaut.2007.11.011. PubMed DOI
Schreiber K, Sciascia S, de Groot PG, Devreese K, Jacobsen S, Ruiz-Irastorza G, et al. Antiphospholipid syndrome. Nat Rev Dis Primers. 2018;4:17103. doi: 10.1038/nrdp.2017.103. PubMed DOI
Meroni PL, Borghi MO, Raschi E, Tedesco F. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol. 2011;7:330–339. doi: 10.1038/nrrheum.2011.52. PubMed DOI
Pengo V, Testa S, Martinelli I, Ghirarduzzi A, Legnani C, Gresele P, et al. Incidence of a first thromboembolic event in carriers of isolated lupus anticoagulant. Thromb Res. 2015;135:46–49. doi: 10.1016/j.thromres.2014.10.013. PubMed DOI
Amengual O, Atsumi T, Khamashta MA. Tissue factor in antiphospholipid syndrome: shifting the focus from coagulation to endothelium. Rheumatology (Oxford) 2003;42:1029–1031. doi: 10.1093/rheumatology/keg273. PubMed DOI
Harper BE, Wills R, Pierangeli SS. Pathophysiological mechanisms in antiphospholipid syndrome. Int J ClinRheumtol. 2011;6:157–171. PubMed PMC
Mustonen P, Lehtonen KV, Javel K, Puurunen M. Persistent antiphospholipid antibody (aPL) in asymptomatic carriers as a risk factor for future thrombotic events: a nationwide prospective study. Lupus. 2014;23:1468–1476. doi: 10.1177/0961203314545410. PubMed DOI
Martirosyan A, Aminov R, Manukyan G. Environmental triggers of autoreactive responses: induction of antiphospholipid antibody formation. Front Immunol. 2019;10:1609. doi: 10.3389/fimmu.2019.01609. PubMed DOI PMC
Bibas M, Biava G, Antinori A. HIV-associated venous thromboembolism. Mediterr J Hematol Infect Dis. 2011;3:e2011030. doi: 10.4084/mjhid.2011.030. PubMed DOI PMC
Ramos-Casals M, Cervera R, Lagrutta M, Medina F, García-Carrasco M, de la Red G, et al. Hispanoamerican Study Group of Autoimmune Manifestations of Chronic Viral Disease (HISPAMEC). Clinical features related to antiphospholipid syndrome in patients with chronic viral infections (hepatitis C virus/HIV infection): description of 82 cases. Clin Infect Dis. 2004;38:1009–1016. doi: 10.1086/382537. PubMed DOI
Neville C, Rauch J, Kassis J, Chang ER, Joseph L, Le Comte M, et al. Thromboembolic risk in patients with high titre anticardiolipin and multiple antiphospholipid antibodies. Thromb Haemost. 2003;90:108–115. doi: 10.1055/s-0037-1613606. PubMed DOI PMC
Sciascia S, Baldovino S, Schreiber K, Solfietti L, Radin M, Cuadrado MJ, et al. Thrombotic risk assessment in antiphospholipid syndrome: the role of new antibody specificities and thrombin generation assay. ClinMol Allergy. 2016;14:6. PubMed PMC
de Laat B, Pengo V, Pabinger I, Musial J, Voskuyl AE, Bultink IE, et al. The association between circulating antibodies against domain I of β2- glycoprotein I and thrombosis: an international multicenter study. J Thromb Haemost. 2009;7:1767–1773. doi: 10.1111/j.1538-7836.2009.03588.x. PubMed DOI
Kelchtermans H, Chayouâ W, Laat B. The significance of antibodies against domain I of beta-2 glycoprotein I in antiphospholipid syndrome. Semin Thromb Hemost. 2018;44:458–465. doi: 10.1055/s-0037-1601329. PubMed DOI
deLaat B, Wu XX, van Lummel M, Derksen RH, de Groot PG, Rand JH. Correlation between antiphospholipid antibodies that recognize domain I of beta2-glycoprotein I and a reduction in the anticoagulant activity of annexin A5. Blood. 2007;109:1490–1494. doi: 10.1182/blood-2006-07-030148. PubMed DOI
Andreoli L, Chighizola CB, Nalli C, Gerosa M, Borghi MO, Pregnolato F, et al. Clinical characterization of antiphospholipid syndrome by detection of IgGantibodies against β2 -glycoprotein i domain 1 and domain 4/5: ratio of anti-domain 1 to anti-domain 4/5 as a useful new biomarker for antiphospholipid syndrome. Arthr Rheumatol. 2015;67:2196–2204. doi: 10.1002/art.39187. PubMed DOI
De Craemer AS, Musial J, Devreese KM. Role of anti-domain 1-β2 glycoprotein I antibodies in the diagnosis and risk stratification of antiphospholipid syndrome. J Thromb Haemost. 2016;14:1779–1787. doi: 10.1111/jth.13389. PubMed DOI
Slavik L, Janek D, Ulehlova J, Krcova V, Hlusi A, Prochazkova J. Detection of anti-domain I β-2 glycoprotein I antibodies as new potential target in antiphospholipid syndrome diagnosis. J Hematol Thrombo Dis. 2017;5:5.
Manukyan G, Papajik T, Gajdos P, Mikulkova Z, Urbanova R, Gabcova G, et al. Neutrophils in chronic lymphocytic leukemia are permanently activated and have functional defects. Oncotarget. 2017;8:84889–84901. doi: 10.18632/oncotarget.20031. PubMed DOI PMC
Sulica A, Morel P, Metes D, Herberman RB. Ig-binding receptors on human NK cells as effector and regulatory surface molecules. Int Rev Immunol. 2001;20:371–414. doi: 10.3109/08830180109054414. PubMed DOI
Feger U, Tolosa E, Huang YH, Waschbisch A, Biedermann T, Melms A, et al. HLA-G expression defines a novel regulatory T-cell subset present in human peripheral blood and sites of inflammation. Blood. 2007;110:568–577. doi: 10.1182/blood-2006-11-057125. PubMed DOI
Chighizola CB, Pregnolato F, Andreoli L, Bodio C, Cesana L, Comerio C, et al. Beyond thrombosis: anti-β2GPI domain 1 antibodies identify late pregnancy morbidity in anti-phospholipid syndrome. J Autoimmun. 2018;90:76–83. doi: 10.1016/j.jaut.2018.02.002. PubMed DOI
Mahler M, Albesa R, Zohoury N, Bertolaccini ML, Ateka-Barrutia O, Rodriguez-Garcia JL, et al. Autoantibodies to domain 1 of beta 2 glycoprotein I determined using a novel chemiluminescence immunoassay demonstrate association with thrombosis in patients with antiphospholipid syndrome. Lupus. 2016;25:911–916. doi: 10.1177/0961203316640366. PubMed DOI
Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS) J Thromb Haemost. 2006;4:295–306. doi: 10.1111/j.1538-7836.2006.01753.x. PubMed DOI
Salmon JE, de Groot PG. Pathogenic role of antiphospholipid antibodies. Lupus. 2008;17:405–411. doi: 10.1177/0961203308090025. PubMed DOI PMC
Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circ Res. 2016;118:1392–1408. doi: 10.1161/CIRCRESAHA.116.306853. PubMed DOI
Dahlbäck B. Coagulation and inflammation—close allies in health and disease. Semin Immunopathol. 2012;34:1–3. doi: 10.1007/s00281-011-0298-0. PubMed DOI
Martirosyan A, Petrek M, Navratilova Z, Blbulyan A, Boyajyan A, Manukyan G. Differential regulation of proinflammatory mediators following LPS- and ATP-induced activation of monocytes from patients with antiphospholipid syndrome. Biomed Res Int. 2015;2015:292851. doi: 10.1155/2015/292851. PubMed DOI PMC
Colasanti T, Alessandri C, Capozzi A, Sorice M, Delunardo F, Longo A, et al. Autoantibodies specific to a peptide of β2-glycoprotein I cross-react with TLR4, inducing a proinflammatory phenotype in endothelial cells and monocytes. Blood. 2012;120:3360–3370. doi: 10.1182/blood-2011-09-378851. PubMed DOI
Di Simone N, Meroni PL, de Papa N, Raschi E, Caliandro D, De Carolis CS, et al. Antiphospholipid antibodies affect trophoblast gonadotropin secretion and invasiveness by binding directly and through adhered beta2-glycoprotein I. Arthr Rheumatol. 2000;43:140–150. doi: 10.1002/1529-0131(200001)43:1<140::AID-ANR18>3.0.CO;2-P. PubMed DOI PMC
Di Simone N, Castellani R, Caliandro D, Caruso A. Monoclonal anti-annexin V antibody inhibits trophoblast gonadotropin secretion and induces syncytiotrophoblast apoptosis. Biol Reprod. 2001;65:1766–1770. doi: 10.1095/biolreprod65.6.1766. PubMed DOI
Holers VM, Girardi G, Mo L, Guthridge JM, Molina H, Pierangeli SS, et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med. 2002;195:211–220. doi: 10.1084/jem.200116116. PubMed DOI PMC
Yamada H, Morikawa M, Kato EH, Shimada S, Kobashi G, Minakami H. Pre-conceptional natural killer cell activity and percentage as predictors of biochemical pregnancy and spontaneous abortion with normal chromosome karyotype. Am J Reprod Immunol. 2003;50:351–354. doi: 10.1034/j.1600-0897.2003.00095.x. PubMed DOI
Fogel LA, Yokoyama WM, French AR. Natural killer cells in human autoimmune disorders. Arthr Res Ther. 2013;15:216. doi: 10.1186/ar4232. PubMed DOI PMC
De Maria A, Bozzano F, Cantoni C, Moretta L. Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation. Proc Natl Acad Sci USA. 2011;108:728–732. doi: 10.1073/pnas.1012356108. PubMed DOI PMC
Batoni G, Esin S, Favilli F, Pardini M, Bottai D, Maisetta G, et al. Human CD56bright and CD56dim natural killer cell subsets respond differentially to direct stimulation with Mycobacterium bovis bacillus Calmette-Guérin. Scand J Immunol. 2005;62:498–506. doi: 10.1111/j.1365-3083.2005.01692.x. PubMed DOI
Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17) Blood. 2013;121:3599–3608. doi: 10.1182/blood-2012-04-425397. PubMed DOI PMC
Grzywacz B, Kataria N, Verneris MR. CD56(dim)CD16(+) NK cells downregulate CD16 following target cell induced activation of matrix metalloproteinases. Leukemia. 2007;21:356–359. doi: 10.1038/sj.leu.2404499. PubMed DOI
Cecchetti S, Spadaro F, Lugini L, Podo F, Ramoni C. Functional role of phosphatidylcholine-specific phospholipase C in regulating CD16 membrane expression in natural killer cells. Eur J Immunol. 2007;37:2912–2922. doi: 10.1002/eji.200737266. PubMed DOI
Carp HJ, Shoenfeld Y. Recurrent spontaneous abortions in antiphospholipid syndrome: natural killer cells—an additional mechanism in a multi factorial process. Rheumatology (Oxford) 2007;46:1517–1519. doi: 10.1093/rheumatology/kem219. PubMed DOI
Perricone C, De Carolis C, Giacomelli R, Zaccari G, Cipriani P, Bizzi E, et al. High levels of NK cells in the peripheral blood of patients affected with anti-phospholipid syndrome and recurrent spontaneous abortion: a potential new hypothesis. Rheumatology (Oxford) 2007;46:1574–1578. doi: 10.1093/rheumatology/kem197. PubMed DOI
King K, Smith S, Chapman M, Sacks G. Detailed analysis of peripheral blood natural killer (NK) cells in women with recurrent miscarriage. Hum Reprod. 2010;25:52–58. doi: 10.1093/humrep/dep349. PubMed DOI
Clifford K, Flanagan AM, Regan L. Endometrial CD56+ natural killer cells in women with recurrent miscarriage: a histomorphometric study. Hum Reprod. 1999;14:2727–2730. doi: 10.1093/humrep/14.11.2727. PubMed DOI
Xiao S, Lu X, Li X, Zhang L, Bao S, Zhao A. Study on the pathogenesis of autoimmune-type recurrent spontaneous abortion by establishing a new mouse model. Eur J Obstet Gynecol Reprod Biol. 2014;178:84–88. doi: 10.1016/j.ejogrb.2014.03.053. PubMed DOI
Ramesh S, Morrell CN, Tarango C, Thomas GD, Yuhanna IS, Girardi G. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. J Clin Invest. 2011;121:120–131. doi: 10.1172/JCI39828. PubMed DOI PMC
Bambauer R, Latza R, Bambauer C, Burgard D, Schiel R. Therapeutic apheresis in autoimmune diseases. Open Access Rheumatol. 2013;5:93–103. doi: 10.2147/OARRR.S34616. PubMed DOI PMC
Martirosyan A, Petrek M, Kishore A, Manukyan G. Immunomodulatory effects of therapeutic plasma exchange on monocytes in antiphospholipid syndrome. Exp Ther Med. 2016;12:1189–1195. doi: 10.3892/etm.2016.3441. PubMed DOI PMC