17β-Estradiol Promotes Proinflammatory and Procoagulatory Phenotype of Innate Immune Cells in the Presence of Antiphospholipid Antibodies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA UP_2020_016, IGA UP_2020_002
Internal grant agency of Palacky University
MH CZ - DRO (FNOL, 00098892)
Ministerstvo Zdravotnictví Ceské Republiky
SCS 18T-1F396
State Committee Science MES RA
PubMed
32549383
PubMed Central
PMC7345022
DOI
10.3390/biomedicines8060162
PII: biomedicines8060162
Knihovny.cz E-zdroje
- Klíčová slova
- antiphospholipid antibodies, antiphospholipid syndrome, estradiol, in vitro, monocytes, tissue factor,
- Publikační typ
- časopisecké články MeSH
Antiphospholipid syndrome (APS) is the most common cause of acquired thrombophilia and recurrent spontaneous miscarriages associated with extended persistence of antiphospholipid antibodies (aPL). How circulating aPL and high-17β-estradiol (E2) environment contribute to the pregnancy complications in APS is poorly defined. Therefore, we aimed to analyse whether E2 could be responsible for the immune cell hyperactivation in aPL- positive (lupus anticoagulant, anti-cardiolipin, anti-β2-glycoprotein) in women. For this, peripheral blood mononuclear cells (PBMCs) from 14 aPL- positive and 13 aPL- negative women were cultured in the presence or absence of E2, LPS or E2+LPS and cell immunophenotype and cytokine release were analysed. In the aPL+ group, E2 presence markedly increased the percentage of NK cells positive for CD69 (p < 0.05), monocytes positive for tissue factor (TF, CD142) (p < 0.05), and B cells expressing PD-L1 (p < 0.05), as well as the elevated production of IL-1β comparing to aPL- women (p < 0.01). Regardless of aPL positivity, E2 augmented the procoagulatory response elicited by LPS in monocytes. Our findings show the ability of E2 to promote proinflammatory and procoagulatory phenotype of innate immune cells in individuals with aPL positivity. Our data highlights the significant impact of female hormones on the activation of immune cells in the presence of aPL.
Zobrazit více v PubMed
Schreiber K., Sciascia S., de Groot P.G., Devreese K., Jacobsen S., Ruiz-Irastorza G., Salmon J.E., Shoenfeld Y., Shovman O., Hunt B.J. Antiphospholipid syndrome. Nat. Rev. Dis. Primers. 2018;4:17103. doi: 10.1038/nrdp.2017.103. PubMed DOI
Martirosyan A., Aminov R., Manukyan G. Environmental Triggers of Autoreactive Responses: Induction of Antiphospholipid Antibody Formation. Front. Immunol. 2019;10:1609. doi: 10.3389/fimmu.2019.01609. PubMed DOI PMC
Cervera R. Antiphospholipid syndrome. Thromb. Res. 2017;151:S43–S47. doi: 10.1016/S0049-3848(17)30066-X. PubMed DOI
Meroni P.L., Borghi M.O., Raschi E., Tedesco F. Pathogenesis of antiphospholipid syndrome: Understanding the antibodies. Nat. Rev. Rheumatol. 2011;7:330–339. doi: 10.1038/nrrheum.2011.52. PubMed DOI
Manukyan G., Martirosyan A., Slavik L., Margaryan S., Ulehlova J., Mikulkova Z., Hlusi A., Papajik T., Kriegova E. Anti-domain 1 β2 glycoprotein antibodies increase expression of tissue factor on monocytes and activate NK Cells and CD8 + cells in vitro. Auto. Highlights. 2020;11:5. doi: 10.1186/s13317-020-00128-y. PubMed DOI PMC
Cervera R., Serrano R., Pons-Estel G.J., Ceberio-Hualde L., Shoenfeld Y., de Ramón E., Buonaiuto V., Jacobsen S., Zeher M.M., Tarr T., et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: A multicentre prospective study of 1000 patients. Ann. Rheum. Dis. 2015;74:1011–1018. doi: 10.1136/annrheumdis-2013-204838. PubMed DOI
Levine J.S., Branch D.W., Rauch J. The antiphospholipid syndrome. N. Engl. J. Med. 2002;346:752–763. doi: 10.1056/NEJMra002974. PubMed DOI
Gerardi M.C., Fernandes M.A., Tincani A., Andreoli L. Obstetric Anti-phospholipid Syndrome: State of the Art. Curr. Rheumatol. Rep. 2018;20:59. doi: 10.1007/s11926-018-0772-y. PubMed DOI
Dragin N., Bismuth J., Cizeron-Clairac G., Biferi M.G., Berthault C., Serraf A., Nottin R., Klatzmann D., Cumano A., Barkats M., et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J. Clin. Invest. 2016;126:1525–1537. doi: 10.1172/JCI81894. PubMed DOI PMC
Moulton V.R. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front. Immunol. 2018;9:2279. doi: 10.3389/fimmu.2018.02279. PubMed DOI PMC
Tchaikovski S.N., Rosing J. Mechanisms of estrogen-induced venous thromboembolism. Thromb. Res. 2010;126:5–11. doi: 10.1016/j.thromres.2010.01.045. PubMed DOI
Vinogradova Y., Coupland C., Hippisley-Cox J. Use of hormone replacement therapy and risk of venous thromboembolism: Nested case-control studies using the QResearch and CPRD databases. BMJ. 2019;364:k4810. doi: 10.1136/bmj.k4810. PubMed DOI PMC
Napso T., Yong H.E.J., Lopez-Tello J., Sferruzzi-Perri A.N. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front. Physiol. 2018;9:1091. doi: 10.3389/fphys.2018.01091. PubMed DOI PMC
James A.H. Venous thromboembolism in pregnancy. Arterioscler. Thromb. Vasc. Biol. 2009;29:326–331. doi: 10.1161/ATVBAHA.109.184127. PubMed DOI
Webber L., Anderson R.A., Davies M., Janse F., Vermeulen N. HRT for women with premature ovarian insufficiency: A comprehensive review. Hum. Reprod. Open. 2017;2017:hox007. doi: 10.1093/hropen/hox007. PubMed DOI PMC
Delgado B.J., Lopez-Ojeda W. Estrogen. StatPearls. Treasure Island (FL): StatPearls Publishing. [(accessed on 12 March 2019)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK538260/
Khan D., Ansar Ahmed S. The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases. Front. Immunol. 2016;6:635. doi: 10.3389/fimmu.2015.00635. PubMed DOI PMC
Karpuzoglu E., Phillips R.A., Dai R., Graniello C., Gogal R.M., Jr., Ahmed S.A. Signal transducer and activation of transcription (STAT) 4beta, a shorter isoform of interleukin-12-induced STAT4, is preferentially activated by estrogen. Endocrinology. 2009;150:1310–1320. doi: 10.1210/en.2008-0832. PubMed DOI PMC
Lelu K., Laffont S., Delpy L., Paulet P.E., Périnat T., Tschanz S.A., Pelletier L., Engelhardt B., Guéry J.C. Estrogen receptor alpha signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1 and Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis. J. Immunol. 2011;187:2386–2393. doi: 10.4049/jimmunol.1101578. PubMed DOI
Grimaldi C.M., Jeganathan V., Diamond B. Hormonal regulation of B cell development: 17 beta-estradiol impairs negative selection of high-affinity DNA-reactive B cells at more than one developmental checkpoint. J. Immunol. 2006;176:2703–2710. doi: 10.4049/jimmunol.176.5.2703. PubMed DOI
Liu H.B., Loo K.K., Palaszynski K., Ashouri J., Lubahn D.B., Voskuhl R.R. Estrogen receptor alpha mediates estrogen’s immune protection in autoimmune disease. J. Immunol. 2003;171:6936–6940. doi: 10.4049/jimmunol.171.12.6936. PubMed DOI
Miller M.M., McMullen P.D., Andersen M.E., Clewell R.A. Multiple receptors shape the estrogen response pathway and are critical considerations for the future of in vitro-based risk assessment efforts. Crit. Rev. Toxicol. 2017;47:564–580. doi: 10.1080/10408444.2017.1289150. PubMed DOI
Walker S.E. Estrogen and autoimmune disease. Clin. Rev. Allergy Immunol. 2011;40:60–65. doi: 10.1007/s12016-010-8199-x. PubMed DOI
López-Pedrera C., Buendía P., Cuadrado M.J., Siendones E., Aguirre M.A., Barbarroja N., Montiel-Duarte C., Torres A., Khamashta M., Velasco F. Antiphospholipid antibodies from patients with the antiphospholipid syndrome induce monocyte tissue factor expression through the simultaneous activation of NF-kappaB/Rel proteins via the p38 mitogen-activated protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis Rheum. 2006;54:301–311. doi: 10.1002/art.21549. PubMed DOI
Lv P.P., Meng Y., Lv M., Feng C.4, Liu Y., Li J.Y., Yu D.Q., Shen Y., Hu X.L., Gao Q., et al. Altered thyroid hormone profile in offspring after exposure to high estradiol environment during the first trimester of pregnancy: A cross-sectional study. BMC Med. 2014;12:240. doi: 10.1186/s12916-014-0240-0. PubMed DOI PMC
Meng Y., Lv P.P., Ding G.L., Yu T.T., Liu Y., Shen Y., Hu X.L., Lin X.H., Tian S., Lv M., et al. High Maternal Serum Estradiol Levels Induce Dyslipidemia in Human Newborns via a Hepatic HMGCR Estrogen Response Element. Sci. Rep. 2015;5:10086. doi: 10.1038/srep10086. PubMed DOI PMC
Høibraaten E., Abdelnoor M., Sandset P.M. Hormone replacement therapy with estradiol and risk of venous thromboembolism--a population-based case-control study. Thromb. Haemost. 1999;82:1218–1221. PubMed
Gomes M.P.V., Deitcher S.R. Risk of venous thromboembolic disease associated with hormonal contraceptives and hormone replacement therapy: A clinical review. Arch. Intern. Med. 2004;164:1965. doi: 10.1001/archinte.164.18.1965. PubMed DOI
Sandset P.M., Høibraaten E., Eilertsen A.L., Dahm A. Mechanisms of thrombosis related to hormone therapy. Thromb. Res. 2009;123:S70–S73. doi: 10.1016/S0049-3848(09)70015-5. PubMed DOI
Straub R.H. The complex role of estrogens in inflammation. Endocr. Rev. 2007;28:521–574. doi: 10.1210/er.2007-0001. PubMed DOI
Loy R.A., Loukides J.A., Polan M.L. Ovarian steroids modulate human monocyte tumor necrosis factor alpha messenger ribonucleic acid levels in cultured human peripheral monocytes. Fertil. Steril. 1992;58:733–739. doi: 10.1016/S0015-0282(16)55320-5. PubMed DOI
Konecna L., Yan M.S., Miller L.E., Schölmerich J., Falk W., Straub R.H. Modulation of IL-6 production during the menstrual cycle in vivo and in vitro. Brain Behav. Immun. 2000;14:49–61. doi: 10.1006/brbi.1999.0570. PubMed DOI
Polan M.L., Loukides J., Nelson P., Carding S., Diamond M., Walsh A., Bottomly K. Progesterone and estradiol modulate interleukin-1 beta messenger ribonucleic acid levels in cultured human peripheral monocytes. J. Clin. Endocrinol. Metab. 1989;69:1200–1206. doi: 10.1210/jcem-69-6-1200. PubMed DOI
Agarwal S.K., Marshall G.D., Jr. Perimenstrual alterations in type-1/type-2 cytokine balance of normal women. Ann. Allergy Asthma Immunol. 1999;83:222–228. doi: 10.1016/S1081-1206(10)62644-0. PubMed DOI
Kanda N., Tamaki K. Estrogen enhances immunoglobulin production by human PBMCs. J. Allergy Clin. Immunol. 1999;103:282–288. doi: 10.1016/S0091-6749(99)70503-8. PubMed DOI
Rogers A., Eastell R. The effect of 17beta-estradiol on production of cytokines in cultures of peripheral blood. Bone. 2001;29:30–34. doi: 10.1016/S8756-3282(01)00468-9. PubMed DOI
Pierangeli S.S., Vega-Ostertag M., Liu X., Girardi G. Complement activation: A novel pathogenic mechanism in the antiphospholipid syndrome. Ann. N. Y. Acad. Sci. 2005;1051:413–420. doi: 10.1196/annals.1361.083. PubMed DOI
Girardi G., Berman J., Redecha P., Spruce L., Thurman J.M., Kraus D., Hollmann T.J., Casali P., Caroll M.C., Wetsel R.A., et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J. Clin. Invest. 2003;112:1644–1654. doi: 10.1172/JCI200318817. PubMed DOI PMC
Confavreux C., Hutchinson M., Hours M.M., Cortinovis-Tourniaire P., Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in multiple sclerosis group. N. Engl. J. Med. 1998;339:285–291. doi: 10.1056/NEJM199807303390501. PubMed DOI
McCombe P.A. The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J. Clin. Med. 2018;7:E494. doi: 10.3390/jcm7120494. PubMed DOI PMC
Nelson J.L., Ostensen M. Pregnancy and rheumatoid arthritis. Rheum. Dis. Clin. New Am. 1997;23:195–212. doi: 10.1016/S0889-857X(05)70323-9. PubMed DOI
Smolen J.S., Aletaha D., Barton A., Burmester G.R., Emery P., Firestein G.S., Kavanaugh A., McInnes I.B., Solomon D.H., Strand V., et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers. 2018;4:18001. doi: 10.1038/nrdp.2018.1. PubMed DOI
Whitacre C.C. Sex differences in autoimmune disease. Nat. Immunol. 2001;2:777–780. doi: 10.1038/ni0901-777. PubMed DOI
Eudy A.M., Siega-Riz A.M., Engel S.M., Franceschini N., Howard A.G., Clowse M.E.B., Petri M. Effect of pregnancy on disease flares in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2018;77:855–860. doi: 10.1136/annrheumdis-2017-212535. PubMed DOI PMC
Bodhankar S., Galipeau D., Vandenbark A.A., Murphy S.J., Offner H. PD-1 Interaction with PD-L1 but not PD-L2 on B-cells Mediates Protective Effects of Estrogen against EAE. J. Clin. Cell Immunol. 2013;4:143. doi: 10.4172/2155-9899.1000143. PubMed DOI PMC
Grimaldi C.M., Cleary J., Dagtas A.S., Moussai D., Diamond B. Estrogen alters thresholds for B cell apoptosis and activation. J. Clin. Invest. 2002;109:1625–1633. doi: 10.1172/JCI0214873. PubMed DOI PMC
Caruso A., De Carolis S., Di Simone N. Antiphospholipid antibodies in obstetrics: New complexities and sites of action. Hum. Reprod. Update. 1999;5:267–276. doi: 10.1093/humupd/5.3.267. PubMed DOI
Perricone C., De Carolis C., Giacomelli R., Zaccari G., Cipriani P., Bizzi E., Perricone R. High levels of NK cells in the peripheral blood of patients affected with anti-phospholipid syndrome and recurrent spontaneous abortion: A potential new hypothesis. Rheumatology. 2007;46:1574–1578. doi: 10.1093/rheumatology/kem197. PubMed DOI
Gomaa M.F., Elkhouly A.G., Farghly M.M., Farid L.A., Awad N.M. Uterine CD56dim and CD16+ Cells in Refractory Antiphospholipid Antibody-Related Pregnancy Loss and Chromosomally Intact Abortuses: A Case-Control Study. J. Hum. Reprod. Sci. 2017;10:18–23. doi: 10.4103/jhrs.JHRS_65_16. PubMed DOI PMC
Carlino C., Stabile H., Morrone S., Bulla R., Soriani A., Agostinis C., Bossi F., Mocci C., Sarazani F., Tedesco F. Recruitment of circulating NK cells through decidual tissues: A possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood. 2008;111:3108–3115. doi: 10.1182/blood-2007-08-105965. PubMed DOI
Chauleur C., Galanaud J.P., Alonso S., Cochery-Nouvellon E., Balducchi J.P., Marès P., Fabbro-Peray P., Gris J.C. Observational study of pregnant women with a previous spontaneous abortion before the 10th gestation week with and without antiphospholipid antibodies. J. Thromb. Haemost. 2010;8:699–706. doi: 10.1111/j.1538-7836.2010.03747.x. PubMed DOI
Del Ross T., Ruffatti A., Visentin M.S., Tonello M., Calligaro A., Favaro M., Hoxha A., Punzi L. Treatment of 139 pregnancies in antiphospholipid-positive women not fulfilling criteria for antiphospholipid syndrome: A retrospective study. J. Rheumatol. 2013;40:425–429. doi: 10.3899/jrheum.120576. PubMed DOI
Riancho-Zarrabeitia L., Daroca G., Muñoz P., López-Hoyos M., Haya A., Martínez-Taboada V.M. Serological evolution in women with positive antiphospholipid antibodies. Semin. Arthritis Rheum. 2017;47:397–402. doi: 10.1016/j.semarthrit.2017.05.001. PubMed DOI
Bala M.M., Paszek E., Lesniak W., Wloch-Kopec D., Jasinska K., Undas A. Antiplatelet and anticoagulant agents for primary prevention of thrombosis in individuals with antiphospholipid antibodies. Cochrane Database Syst. Rev. 2018;7:CD012534. doi: 10.1002/14651858.CD012534.pub2. PubMed DOI PMC
Gibbins K.J., Tebo A.E., Nielsen S.K., Branch D.W. Antiphospholipid antibodies in women with severe preeclampsia and placental insufficiency: A case-control study. Lupus. 2018;27:1903–1910. doi: 10.1177/0961203318787035. PubMed DOI PMC
Alijotas-Reig J., Esteve-Valverde E., Ferrer-Oliveras R., LLurba E., Ruffatti A., Tincani A., Lefkou E., Bertero M.T., Espinosa G., de Carolis S., et al. Comparative study between obstetric antiphospholipid syndrome and obstetric morbidity related with antiphospholipid antibodies. Med. Clin. 2018;151:215–222. doi: 10.1016/j.medcli.2017.11.017. PubMed DOI
WHO . Medical Eligibility Criteria for Contraceptive Use. 5th ed. WHO; Geneva, Switzerland: 2015. [(accessed on 15 March 2015)]. Available online: http://www.who.int/reproductivehealth/publications/family_planning/Ex-Summ-MEC-5/en/
Tektonidou M.G., Andreoli L., Limper M., Amoura Z., Cervera R., Costedoat-Chalumeau N., Cuadrado M.J., Dörner T., Ferrer-Oliveras R., Hambly K., et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann. Rheum. Dis. 2019;78:1296–1304. doi: 10.1136/annrheumdis-2019-215213. PubMed DOI PMC