Immunomodulatory effects of therapeutic plasma exchange on monocytes in antiphospholipid syndrome
Status PubMed-not-MEDLINE Jazyk angličtina Země Řecko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27446342
PubMed Central
PMC4950391
DOI
10.3892/etm.2016.3441
PII: ETM-0-0-3441
Knihovny.cz E-zdroje
- Klíčová slova
- antiphospholipid syndrome, cytokines, mRNA, monocytes, therapeutic plasma exchange,
- Publikační typ
- časopisecké články MeSH
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thrombosis and recurrent fetal loss, with the persistent presence of antiphospholipid antibodies (aPLs). aPLs exert their pathogenic effect via the overproduction of tissue factor and activation of complement and several cell types, including endothelial cells, platelets and notably monocytes. As a result, a hypercoagulable state develops leading to APS-associated obstetric complications and fetal loss. Despite being far from optimal, treatment of APS usually includes heparin and low dose aspirin. Recently, plasma exchange (PE) therapy was successfully used in patients with APS with obstetric complications who did not respond to the standard treatment. Therefore, the present study investigated the mechanism underlying PE action, and aimed to determine whether PE affects the functional activity of APS monocytes by examining the expression of 11 mRNA transcripts encoding cytokines, signaling molecules and transcription factors. Monocytes were collected prior to and following the PE treatment from women with APS who experienced recurrent pregnancy losses, as well as from healthy volunteers. Compared with control cells, APS monocytes showed deregulated expression of interleukin (IL)-1β, IL-6, IL-23, chemokine (C-C motif) ligand 2 (CCL2), C-X-C motif chemokine 10 (CXCL10), toll-like receptor 2, and signal transducer and activator of transcription 3. PE treatment resulted in increased IL-1β, IL-6, IL-23, CCL2, P2X7 and tumor necrosis factor-α mRNA transcripts in APS monocytes, restoring the mRNA expression levels to within normal ranges. Furthermore, PE therapy counterbalanced the expression levels of CCL2 and CXCL10, the levels of which are indicative of T helper cell 1/2 balance. The results of the present study indicate that the altered transcriptional profile in APS monocytes was restored by the immunomodulatory effect of plasmapheresis.
Zobrazit více v PubMed
de Jesus GR, Agmon-Levin N, Andrade CA, Andreoli L, Chighizola CB, Porter TF, Salmon J, Silver RM, Tincani A, Branch DW. 14th International congress on antiphospholipid antibodies task force report on obstetric antiphospholipid syndrome. Autoimmun Rev. 2014;13:795–813. doi: 10.1016/j.autrev.2014.02.003. PubMed DOI
Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, Derksen RH, DE Groot PG, Koike T, Meroni PL, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS) J Thromb Haemost. 2006;4:295–306. doi: 10.1111/j.1538-7836.2006.01753.x. PubMed DOI
Gris JC, Bouvier S. Antiphospholipid syndrome: Looking for a refocusing. Thromb Res 131 Suppl. 2013;1:S28–S31. doi: 10.1016/S0049-3848(13)70016-1. PubMed DOI
Galli M, Borrelli G, Jacobsen EM, Marfisi RM, Finazzi G, Marchioli R, Wisloff F, Marziali S, Morboeuf O, Barbui T. Clinical significance of different antiphospholipid antibodies in the WAPS (warfarin in the antiphospholipid syndrome) study. Blood. 2007;110:1178–1183. doi: 10.1182/blood-2007-01-066043. PubMed DOI
Khamashta MA, Asherson RA. Hughes syndrome: Antiphospholipid antibodies move closer to thrombosis in 1994. Br J Rheumatol. 1995;34:493–494. doi: 10.1093/rheumatology/34.6.493. PubMed DOI
Reverter JC, Tàssies D, Font J, Khamashta MA, Ichikawa K, Cervera R, Escolar G, Hughes GR, Ingelmo M, Ordinas A. Effects of human monoclonal anticardiolipin antibodies on platelet function and on tissue factor expression on monocytes. Arthritis Rheum. 1998;41:1420–1427. doi: 10.1002/1529-0131(199808)41:8<1420::AID-ART11>3.0.CO;2-U. PubMed DOI
Kornberg A, Blank M, Kaufman S, Shoenfeld Y. Induction of tissue factor-like activity in monocytes by anti-cardiolipin antibodies. J Immunol. 1994;153:1328–1332. PubMed
Branch DW, Rodgers GM. Induction of endothelial cell tissue factor activity by sera from patients with antiphospholipid syndrome: A possible mechanism of thrombosis. Am J Obstet Gynecol. 1993;168:206–210. doi: 10.1016/S0002-9378(12)90915-1. PubMed DOI
López-Pedrera C, Cuadrado MJ, Herández V, Buendïa P, Aguirre MA, Barbarroja N, Torres LA, Villalba JM, Velasco F, Khamashta M. Proteomic analysis in monocytes of antiphospholipid syndrome patients: Deregulation of proteins related to the development of thrombosis. Arthritis Rheum. 2008;58:2835–2844. doi: 10.1002/art.23756. PubMed DOI
Ruiz-Irastorza G, Khamashta MA. Management of thrombosis in antiphospholipid syndrome and systemic lupus erythematosus in pregnancy. Ann N Y Acad Sci. 2005;1051:606–612. doi: 10.1196/annals.1361.105. PubMed DOI
Di Prima FA, Valenti O, Hyseni E, Giorgio E, Faraci M, Renda E, De Domenico R, Monte S. Antiphospholipid syndrome during pregnancy: The state of the art. J Prenat Med. 2011;5:41–53. PubMed PMC
Meroni PL, Moia M, Derksen RH, Tincani A, McIntyre JA, Arnout JM, Koike T, Piette JC, Khamashta MA, Shoenfeld Y. Venous thromboembolism in the antiphospholipid syndrome: Management guidelines for secondary prophylaxis. Lupus. 2003;12:504–507. doi: 10.1191/0961203303lu389oa. PubMed DOI
Erkan D, Ortel TL, Lockshin MD. Warfarin in antiphospholipid syndrome-time to explore new horizons. J Rheumatol. 2005;32:208–212. PubMed
Tincani A, Branch W, Levy RA, Piette JC, Carp H, Rai RS, Khamashta M, Shoenfeld Y. Treatment of pregnant patients with antiphospholipid syndrome. Lupus. 2003;12:524–529. doi: 10.1191/0961203303lu393oa. PubMed DOI
Marson P, Bagatella P, Bortolati M, Tison T, De Silvestro G, Fabris F, Pengo V, Ruffatti A. Plasma exchange for the management of the catastrophic antiphospholipid syndrome: Importance of the type of fluid replacement. J Intern Med. 2008;264:201–203. doi: 10.1111/j.1365-2796.2008.01942.x. PubMed DOI
Ibrahim RB, Balogun RA. Medications in patients treated with therapeutic plasma exchange: Prescription dosage, timing and drug overdose. Semin Dial. 2012;25:176–189. doi: 10.1111/j.1525-139X.2011.01030.x. PubMed DOI
Ibrahim RB, Balogun RA. Medications and therapeutic apheresis procedures: Are we doing our best? J Clin Apher. 2013;28:73–77. doi: 10.1002/jca.21261. PubMed DOI
Kaplan AA. Therapeutic apheresis for renal disorders. Therap Apher. 1999;3:25–30. doi: 10.1046/j.1526-0968.1999.00138.x. PubMed DOI
Bove LL, Bednall T, Masser B, Buzza M. Understanding the plasmapheresis donor in a voluntary, nonremunerated environment. Transfusion. 2011;51:2411–2424. doi: 10.1111/j.1537-2995.2011.03168.x. PubMed DOI
Crocco I, Franchini M, Garozzo G, Gandini AR, Gandini G, Bonomo P, Aprili G. Adverse reactions in blood and apheresis donors: Experience from two Italian transfusion centres. Blood Transfus. 2009;7:35–38. PubMed PMC
Nguyen TC, Kiss JE, Goldman JR, Carcillo JA. The role of plasmapheresis in critical illness. Crit Care Clin. 2012;28:453–468. doi: 10.1016/j.ccc.2012.04.009. PubMed DOI PMC
Nakanishi T, Suzuki N, Kuragano T, Nagasawa Y, Hasuike Y. Current topics in therapeutic plasmapheresis. Clin Exp Nephrol. 2014;18:41–49. doi: 10.1007/s10157-013-0838-0. PubMed DOI
Dittrich E, Schmaldienst S, Langer M, Jansen M, Hörl WH, Derfler K. Immunoadsorption and plasma exchange in pregnancy. Kidney Blood Press Res. 2002;25:232–239. doi: 10.1159/000066343. PubMed DOI
Bortolati M, Marson P, Chiarelli S, Tison T, Facchinetti M, Gervasi MT, De Silvestro G, Ruffatti A. Case reports of the use of immunoadsorption or plasma exchange in high-risk pregnancies of women with antiphospholipid syndrome. Ther Apher Dial. 2009;13:157–160. doi: 10.1111/j.1744-9987.2009.00671.x. PubMed DOI
Bontadi A, Ruffatti A, Marson P, Tison T, Tonello M, Hoxha A, De Silvestro G, Punzi L. Plasma exchange and immunoadsorption effectively remove antiphospholipid antibodies in pregnant patients with antiphospholipid syndrome. J Clin Apher. 2012;27:200–204. doi: 10.1002/jca.21229. PubMed DOI
Ferrer DG, Jaldín-Fincati JR, Amigone JL, Capra RH, Collino CJ, Albertini RA, Chiabrando GA. Standardized flow cytometry assay for identification of human monocytic heterogeneity and LRP1 expression in monocyte subpopulations: Decreased expression of this receptor in nonclassical monocytes. Cytometry A. 2014;85:601–610. doi: 10.1002/cyto.a.22455. PubMed DOI
Manukyan G, Petrek M, Kriegova E, Ghazaryan K, Fillerova R, Fillerova R, Boyajyan A. Activated phenotype of circulating neutrophils in familial mediterranean fever. Immunobiology. 2013;218:892–898. doi: 10.1016/j.imbio.2012.10.007. PubMed DOI
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Cuadrado MJ, López-Pedrera C, Khamashta MA, Camps MT, Tinahones F, Torres A, Hughes GR, Velasco F. Thrombosis in primary antiphospholipid syndrome: A pivotal role for monocyte tissue factor expression. Arthritis Rheum. 1997;40:834–841. doi: 10.1002/art.1780400509. PubMed DOI
Wakefield TW, Strieter RM, Wilke CA, Kadell AM, Wrobleski SK, Burdick MD, Schmidt R, Kunkel SL, Greenfield LJ. Venous thrombosis-associated inflammation and attenuation with neutralizing antibodies to cytokines and adhesion molecules. Arterioscler Thromb Vasc Biol. 1995;15:258–268. doi: 10.1161/01.ATV.15.2.258. PubMed DOI
Godessart N, Kunkel SL. Chemokines in autoimmune disease. Curr Opin Immunol. 2001;13:670–675. doi: 10.1016/S0952-7915(01)00277-1. PubMed DOI
Oghumu S, Lezama-Dávila CM, Isaac-Márquez AP, Satoskar AR. Role of chemokines in regulation of immunity against leishmaniasis. Exp Parasitol. 2010;126:389–396. doi: 10.1016/j.exppara.2010.02.010. PubMed DOI PMC
Gu D, Chen Z, Zhao H, Du W, Xue F, Ge J, Sui T, Wu H, Liu B, Lu S, Zhang L, Yang R. Th1 (CXCL10) and Th2 (CCL2) chemokine expression in patients with immune thrombocytopenia. Hum Immunol. 2010;71:586–591. doi: 10.1016/j.humimm.2010.02.010. PubMed DOI
Rotondi M, Rosati A, Buonamano A, Lasagni L, Lazzeri E, Pradella F, Fossombroni V, Cirami C, Liotta F, La Villa G, et al. High pretransplant serum levels of CXCL10/IP-10 are related to increased risk of renal allograft failure. Am J Transplant. 2004;4:1466–1474. doi: 10.1111/j.1600-6143.2004.00525.x. PubMed DOI
Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: Is successful pregnancy a TH2 phenomenon? Immunology Today. 1993;14:353–356. doi: 10.1016/0167-5699(93)90235-D. PubMed DOI
Lissauer D, Goodyear O, Khanum R, Moss PA, Kilby MD. Profile of maternal CD4 T-cell effector function during normal pregnancy and in women with a history of recurrent miscarriage. Clin Sci (Lond) 2014;126:347–354. doi: 10.1042/CS20130247. PubMed DOI
Raghupathy R, Makhseed M, Azizieh F, Omu A, Gupta M, Farhat R. Cytokine production by maternal lymphocytes during normal human pregnancy and in unexplained recurrent spontaneous abortion. Hum Reprod. 2000;15:713–778. doi: 10.1093/humrep/15.3.713. PubMed DOI
Bernales I, Fullaondo A, Marín-Vidalled MJ, Ucar E, Martínez-Taboada V, López-Hoyos M, Zubiaga AM. Innate immune response gene expression profiles characterize primary antiphospholipid syndrome. Genes Immun. 2008;9:38–46. doi: 10.1038/sj.gene.6364443. PubMed DOI
Laird SM, Tuckerman EM, Cork BA, Linjawi S, Blakemore AI, Li TC. A review of immune cells and molecules in women with recurrent miscarriage. Hum Reprod Update. 2003;9:163–174. doi: 10.1093/humupd/dmg013. PubMed DOI
Goto H, Matsuo H, Nakane S, Izumoto H, Fukudome T, Kambara C, Shibuya N. Plasmapheresis affects T helper type-1/T helper type-2 balance of circulating peripheral lymphocytes. Ther Apher. 2001;5:494–496. doi: 10.1046/j.1526-0968.2001.00386.x. PubMed DOI
Shariatmadar S, Nassiri M, Vincek V. Effect of plasma exchange on cytokines measured by multianalyte bead array in thrombotic thrombocytopenic purpura. Am J Hematol. 2005;79:83–88. doi: 10.1002/ajh.20342. PubMed DOI
Haskill S, Johnson C, Eierman D, Becker S, Warren K. Adherence induces selective mRNA expression of monocyte mediators and proto-oncogenes. J Immunol. 1988;140:1690–1694. PubMed
Fuhlbrigge RC, Chaplin DD, Kiely JM, Unanue ER. Regulation of interleukin 1 gene expression by adherence and lipopolysaccharide. J Immunol. 1987;138:3799–3802. PubMed
Yang J, Hooper WC, Phillips DJ, Tondella ML, Talkington DF. Centrifugation of human lung epithelial carcinoma a549 cells up-regulates interleukin-1beta gene expression. Clin Diagn Lab Immunol. 2002;9:1142–1143. PubMed PMC
Yona S, Jung S. Monocytes: subsets, origins, fates and functions. Curr Opin Hematol. 2010;17:53–59. doi: 10.1097/MOH.0b013e3283324f80. PubMed DOI