Impact of antiphospholipid syndrome on placenta and uterine NK cell function: insights from a mouse model
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FNOl, 00098892
MH CZ - DRO
UP_2024_013.
IGA LF
SCS 21AG-1F072
State Committee Science MES RA
PubMed
39732740
PubMed Central
PMC11682064
DOI
10.1038/s41598-024-82451-2
PII: 10.1038/s41598-024-82451-2
Knihovny.cz E-zdroje
- Klíčová slova
- Anti-β2GPI antibodies, Antiphospholipid syndrome, Cell proliferation, Endothelial cells, Mouse model, NK cells, Placenta, RNAseq, Trophoblasts,
- MeSH
- antifosfolipidový syndrom * imunologie patologie MeSH
- buňky NK * imunologie metabolismus MeSH
- modely nemocí na zvířatech * MeSH
- myši MeSH
- placenta * metabolismus patologie MeSH
- proliferace buněk MeSH
- stanovení celkové genové exprese MeSH
- těhotenství MeSH
- transkriptom MeSH
- trofoblasty metabolismus patologie imunologie MeSH
- uterus * patologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment. Analyses of APS placentas showed a reduced cell proliferation, lower protein content and thinning of endothelial cells. Disturbances in APS trophoblast cells were linked to a cell cycle shift in cytotrophoblast cells, and a reduced number of spiral artery-associated trophoblast giant cells (SpA-TGC). Transcriptomic profiling of placental tissue highlighted disruptions in cell cycle regulation with notable downregulation of genes involved in developmental or signaling processes. Cellular senescence, metabolic and p53-related pathways were also enriched, suggesting potential mechanisms underlying placental dysfunction in APS. Thrombotic events, though occasionally detected, appeared to have no significant impact on the overall pathological changes. The increased number of dysfunctional uNK cells was not associated with enhanced cytotoxic capabilities. Transcriptomic data corroborated these findings, showing prominent suppression of NK cell secretory capacity and cytokine signaling pathways. Our study highlights the multifactorial nature of APS-associated placental pathologies, which involve disrupted angiogenesis, cell cycle regulation, and NK cell functionality.
Zobrazit více v PubMed
Galarza-Maldonado, C. et al. Obstetric antiphospholipid syndrome. Autoimmun. Rev.11(4), 288–295. 10.1016/j.autrev.2011.10.006 (2012). PubMed
de Groot, P. G. & Urbanus, R. T. The significance of autoantibodies against β2-glycoprotein I. Blood120(2), 266–274. 10.1182/blood-2012-03-378646 (2012). PubMed
Tong, M., Viall, C. A. & Chamley, L. W. Antiphospholipid antibodies and the placenta: a systematic review of their in vitro effects and modulation by treatment. Hum. Reprod. Update21(1), 97–118. 10.1093/humupd/dmu049 (2015). PubMed
Chu, H. et al. Protein phosphatase 2A activation via ApoER2 in trophoblasts drives preeclampsia in a mouse model of the antiphospholipid syndrome. Circ. Res.129(7), 735–750. 10.1161/CIRCRESAHA.120.318941 (2021). PubMed PMC
Yang, J. & Liang, M. Risk factors for pregnancy morbidity in women with antiphospholipid syndrome. J. Reprod. Immunol.145, 103315. 10.1016/j.jri.2021.103315 (2021). PubMed
Schreiber, K. & Hunt, B. J. Managing antiphospholipid syndrome in pregnancy. Thromb. Res.181, S41–S46. 10.1016/S0049-3848(19)30366-4 (2019). PubMed
Meroni, P. L. et al. Obstetric and vascular antiphospholipid syndrome: same antibodies but different diseases? Nat. Rev. Rheumatol.14(7), 433–440. 10.1038/s41584-018-0032-6 (2018). PubMed
Schiffer, V. et al. Spiral artery blood flow during pregnancy: a systematic review and meta-analysis. BMC Pregn. Childbirth20(1), 680. 10.1186/s12884-020-03150-0 (2020). PubMed PMC
Cornish, E. F. et al. Innate immune responses to acute viral infection during pregnancy. Front. Immunol.11, 572567. 10.3389/fimmu.2020.572567 (2020). PubMed PMC
Sfakianoudis, K. et al. The role of uterine natural killer cells on recurrent miscarriage and recurrent implantation failure: from pathophysiology to treatment. Biomedicines9(10), 1425. 10.3390/biomedicines9101425 (2021). PubMed PMC
Zhang, X. & Wei, H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front. Immunol.12, 728291. 10.3389/fimmu.2021.728291 (2021). PubMed PMC
Manukyan, G. et al. Antiphospholipid antibody-mediated NK cell cytotoxicity. J. Reprod. Immunol.155, 103791. 10.1016/j.jri.2022.103791 (2023). PubMed
Manukyan, G. et al. Anti-domain 1 β2 glycoprotein antibodies increase expression of tissue factor on monocytes and activate NK cells and CD8 + cells in vitro. Auto Immun. Highlights11(1), 5. 10.1186/s13317-020-00128-y (2020). PubMed PMC
Bayram, F. et al. Perinatal asphyxia is associated with the umbilical cord nucleated red blood cell count in pre-eclamptic pregnancies. J. Obstet. Gynaecol.30(4), 383–386. 10.3109/01443611003706928 (2010). PubMed
Gemble, S. et al. Genetic instability from a single S phase after whole-genome duplication. Nature604(7904), 146–151. 10.1038/s41586-022-04578-4 (2022). PubMed PMC
Sultana, Z., Maiti, K., Dedman, L. & Smith, R. Is there a role for placental senescence in the genesis of obstetric complications and fetal growth restriction? Am. J. Obstet. Gynecol.218(2S), S762–S773. 10.1016/j.ajog.2017.11.567 (2018). PubMed
Bai, H. et al. Progressive senescence programs induce intrinsic vulnerability to aging-related female breast cancer. Nat. Commun.15(1), 5154. 10.1038/s41467-024-49106-2 (2024). PubMed PMC
Wong-Riley, M. T. & Besharse, J. C. The kinesin superfamily protein KIF17: one protein with many functions. Biomol. Concepts3(3), 267–282. 10.1515/bmc-2011-0064 (2012). PubMed PMC
Mann, B. J. & Wadsworth, P. Kinesin-5 regulation and function in mitosis. Trends Cell. Biol.29(1), 66–79. 10.1016/j.tcb.2018.08.004 (2019). PubMed
Giussani, D. A. Breath of life: heart disease link to developmental hypoxia. Circulation144(17), 1429–1443. 10.1161/CIRCULATIONAHA.121.054689 (2021). PubMed PMC
Jiang, X. et al. A differentiation roadmap of murine placentation at single-cell resolution. Cell. Discov.9(1), 30. 10.1038/s41421-022-00513-z (2023). PubMed PMC
Lu, C. et al. Single-cell transcriptome analyses reveal disturbed decidual homoeostasis in obstetric antiphospholipid syndrome. Ann. Rheum. Dis.83(5), 624–637. 10.1136/ard-2023-224930 (2024). PubMed
Kar, M., Ghosh, D. & Sengupta, J. Histochemical and morphological examination of proliferation and apoptosis in human first trimester villous trophoblast. Hum. Reprod.22(11), 2814–2823. 10.1093/humrep/dem284 (2007). PubMed
Knöfler, M. et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell. Mol. Life Sci.76(18), 3479–3496. 10.1007/s00018-019-03104-6 (2019). PubMed PMC
Levy, R. et al. Trophoblast apoptosis from pregnancies complicated by fetal growth restriction is associated with enhanced p53 expression. Am. J. Obstet. Gynecol.186(5), 1056–1061. 10.1067/mob.2002.122250 (2002). PubMed
Liu, T. et al. The role of p53-MDM2 signaling in missed abortion and possible pathogenesis. J. Obstet. Gynaecol. Res.48(11), 2686–2696. 10.1111/jog.15385 (2022). PubMed
Ornoy, A. et al. The effects of antiphospholipid antibodies obtained from women with SLE/APS and associated pregnancy loss on rat embryos and placental explants in culture. Lupus12(7), 573–578. 10.1191/0961203303lu405oa (2003). PubMed
Pantham, P. et al. Antiphospholipid antibodies alter cell-death-regulating lipid metabolites in first and third trimester human placentae. Am. J. Reprod. Immunol.74(2), 181–199. 10.1111/aji.12387 (2015). PubMed
Kumari, R. & Jat, P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front. Cell. Dev. Biol.9, 645593. 10.3389/fcell.2021.645593 (2021). PubMed PMC
Huang, Z. et al. Inactivation of yes-associated protein mediates trophoblast dysfunction: a new mechanism of pregnancy loss associated with anti-phospholipid antibodies?. Biomedicines10(12), 3296. 10.3390/biomedicines10123296 (2022). PubMed PMC
Lu, X. et al. Effect and mechanism of the aβ2–GP I/rhβ2–GP I complex on JEG–3 cell proliferation, migration and invasion. Mol. Med. Rep.17(6), 7505–7512. 10.3892/mmr.2018.8822 (2018). PubMed PMC
Sati, L. et al. The presence of kinesin superfamily motor proteins KIFC1 and KIF17 in normal and pathological human placenta. Placenta30(10), 848–854. 10.1016/j.placenta.2009.07.005 (2009). PubMed
Natale, B. V. et al. Reduced uteroplacental perfusion pressure (RUPP) causes altered trophoblast differentiation and pericyte reduction in the mouse placenta labyrinth. Sci. Rep.8(1), 17162. 10.1038/s41598-018-35606-x (2018). PubMed PMC
Fan, X. et al. VEGF maintains maternal vascular space homeostasis in the mouse placenta through modulation of trophoblast giant cell functions. Biomolecules11(7), 1062. 10.3390/biom11071062 (2021). PubMed PMC
Li, Q. et al. MALAT1 modulates trophoblast phenotype via miR-101-3p/VEGFA axis. Arch. Biochem. Biophys.744, 109692. 10.1016/j.abb.2023.109692 (2023). PubMed
Bobek, G. et al. Quantification of placental change in mouse models of preeclampsia using magnetic resonance microscopy. Eur. J. Histochem.62(2), 2868. 10.4081/ejh.2018.2868 (2018). PubMed PMC
Mayer-Pickel, K. et al. Preeclampsia and the antiphospholipid syndrome. Biomedicines11(8), 2298. 10.3390/biomedicines11082298 (2023). PubMed PMC
Committee on Practice Bulletins-Obstetrics. Gestational hypertension and preeclampsia: ACOG practice bulletin summary, number 222. Obstet. Gynecol.135(6), 1492–1495. 10.1097/AOG.0000000000003892 (2020). PubMed
Opichka, M. A. et al. Vascular dysfunction in preeclampsia. Cells10(11), 3055. 10.3390/cells10113055 (2021). PubMed PMC
Dimitriadis, E. et al. Pre-eclampsia. Nat. Rev. Dis. Primers9(1), 8. 10.1038/s41572-023-00417-6 (2013). Erratum in: Nat. Rev. Dis. Primers9(1), 35. 10.1038/s41572-023-00451-4 (2013).
Von Woon, E. et al. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis. Hum. Reprod. Update28(4), 548–582 10.1093/humupd/dmac006 (2022). PubMed PMC
Moffett, A., Regan, L. & Braude, P. Natural killer cells, miscarriage, and infertility. BMJ329(7477), 1283–1285. 10.1136/bmj.329.7477.1283 (2004). PubMed PMC
Perricone, C. et al. High levels of NK cells in the peripheral blood of patients affected with anti-phospholipid syndrome and recurrent spontaneous abortion: a potential new hypothesis. Rheumatology (Oxford)46(10), 1574–1578. 10.1093/rheumatology/kem197 (2007). PubMed
Carbone, J. et al. Quantitative abnormalities of peripheral blood distinct T, B, and natural killer cell subsets and clinical findings in obstetric antiphospholipid syndrome. J. Rheumatol.36(6), 1217–1225. 10.3899/jrheum.081079 (2009). PubMed
Gomaa, M. F. et al. Uterine CD56dim and CD16 + cells in refractory antiphospholipid antibody-related pregnancy loss and chromosomally intact abortuses: a case-control study. J. Hum. Reprod. Sci.10(1), 18–23. 10.4103/jhrs.JHRS_65_16 (2017). PubMed PMC
Zhang, Y. et al. Increased peripheral NKG2A-NKG2D + CD3-CD16 + CD56dim NK cell subset was positively correlated with antiphospholipid antibodies in patients of obstetric antiphospholipid syndrome. Immunol. Investig.51(2), 425–437. 10.1080/08820139.2020.1835949 (2022). PubMed
Sojka, D. K., Yang, L. & Yokoyama, W. M. Uterine natural killer cells. Front. Immunol.10, 960. 10.3389/fimmu.2019.00960 (2019). PubMed PMC
Xie, M. et al. Uterine natural killer cells: a rising star in human pregnancy regulation. Front. Immunol.1, 13:918550. 10.3389/fimmu.2022.918550 (2022). PubMed PMC
Dean, I. et al. Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity. Nat. Commun.15(1), 683. 10.1038/s41467-024-44789-z (2024). PubMed PMC
Yockey, L. J. & Iwasaki, A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity49(3), 397–412. 10.1016/j.immuni.2018.07.017 (2018). PubMed PMC
Tincani, A. et al. Immunization of naive BALB/c mice with human beta2-glycoprotein I breaks tolerance to the murine molecule. Arthritis Rheum.46(5), 1399–1404. 10.1002/art.10304 (2002). PubMed