Impact of antiphospholipid syndrome on placenta and uterine NK cell function: insights from a mouse model

. 2024 Dec 28 ; 14 (1) : 31163. [epub] 20241228

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39732740

Grantová podpora
FNOl, 00098892 MH CZ - DRO
UP_2024_013. IGA LF
SCS 21AG-1F072 State Committee Science MES RA

Odkazy

PubMed 39732740
PubMed Central PMC11682064
DOI 10.1038/s41598-024-82451-2
PII: 10.1038/s41598-024-82451-2
Knihovny.cz E-zdroje

Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment. Analyses of APS placentas showed a reduced cell proliferation, lower protein content and thinning of endothelial cells. Disturbances in APS trophoblast cells were linked to a cell cycle shift in cytotrophoblast cells, and a reduced number of spiral artery-associated trophoblast giant cells (SpA-TGC). Transcriptomic profiling of placental tissue highlighted disruptions in cell cycle regulation with notable downregulation of genes involved in developmental or signaling processes. Cellular senescence, metabolic and p53-related pathways were also enriched, suggesting potential mechanisms underlying placental dysfunction in APS. Thrombotic events, though occasionally detected, appeared to have no significant impact on the overall pathological changes. The increased number of dysfunctional uNK cells was not associated with enhanced cytotoxic capabilities. Transcriptomic data corroborated these findings, showing prominent suppression of NK cell secretory capacity and cytokine signaling pathways. Our study highlights the multifactorial nature of APS-associated placental pathologies, which involve disrupted angiogenesis, cell cycle regulation, and NK cell functionality.

Zobrazit více v PubMed

Galarza-Maldonado, C. et al. Obstetric antiphospholipid syndrome. Autoimmun. Rev.11(4), 288–295. 10.1016/j.autrev.2011.10.006 (2012). PubMed

de Groot, P. G. & Urbanus, R. T. The significance of autoantibodies against β2-glycoprotein I. Blood120(2), 266–274. 10.1182/blood-2012-03-378646 (2012). PubMed

Tong, M., Viall, C. A. & Chamley, L. W. Antiphospholipid antibodies and the placenta: a systematic review of their in vitro effects and modulation by treatment. Hum. Reprod. Update21(1), 97–118. 10.1093/humupd/dmu049 (2015). PubMed

Chu, H. et al. Protein phosphatase 2A activation via ApoER2 in trophoblasts drives preeclampsia in a mouse model of the antiphospholipid syndrome. Circ. Res.129(7), 735–750. 10.1161/CIRCRESAHA.120.318941 (2021). PubMed PMC

Yang, J. & Liang, M. Risk factors for pregnancy morbidity in women with antiphospholipid syndrome. J. Reprod. Immunol.145, 103315. 10.1016/j.jri.2021.103315 (2021). PubMed

Schreiber, K. & Hunt, B. J. Managing antiphospholipid syndrome in pregnancy. Thromb. Res.181, S41–S46. 10.1016/S0049-3848(19)30366-4 (2019). PubMed

Meroni, P. L. et al. Obstetric and vascular antiphospholipid syndrome: same antibodies but different diseases? Nat. Rev. Rheumatol.14(7), 433–440. 10.1038/s41584-018-0032-6 (2018). PubMed

Schiffer, V. et al. Spiral artery blood flow during pregnancy: a systematic review and meta-analysis. BMC Pregn. Childbirth20(1), 680. 10.1186/s12884-020-03150-0 (2020). PubMed PMC

Cornish, E. F. et al. Innate immune responses to acute viral infection during pregnancy. Front. Immunol.11, 572567. 10.3389/fimmu.2020.572567 (2020). PubMed PMC

Sfakianoudis, K. et al. The role of uterine natural killer cells on recurrent miscarriage and recurrent implantation failure: from pathophysiology to treatment. Biomedicines9(10), 1425. 10.3390/biomedicines9101425 (2021). PubMed PMC

Zhang, X. & Wei, H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front. Immunol.12, 728291. 10.3389/fimmu.2021.728291 (2021). PubMed PMC

Manukyan, G. et al. Antiphospholipid antibody-mediated NK cell cytotoxicity. J. Reprod. Immunol.155, 103791. 10.1016/j.jri.2022.103791 (2023). PubMed

Manukyan, G. et al. Anti-domain 1 β2 glycoprotein antibodies increase expression of tissue factor on monocytes and activate NK cells and CD8 + cells in vitro. Auto Immun. Highlights11(1), 5. 10.1186/s13317-020-00128-y (2020). PubMed PMC

Bayram, F. et al. Perinatal asphyxia is associated with the umbilical cord nucleated red blood cell count in pre-eclamptic pregnancies. J. Obstet. Gynaecol.30(4), 383–386. 10.3109/01443611003706928 (2010). PubMed

Gemble, S. et al. Genetic instability from a single S phase after whole-genome duplication. Nature604(7904), 146–151. 10.1038/s41586-022-04578-4 (2022). PubMed PMC

Sultana, Z., Maiti, K., Dedman, L. & Smith, R. Is there a role for placental senescence in the genesis of obstetric complications and fetal growth restriction? Am. J. Obstet. Gynecol.218(2S), S762–S773. 10.1016/j.ajog.2017.11.567 (2018). PubMed

Bai, H. et al. Progressive senescence programs induce intrinsic vulnerability to aging-related female breast cancer. Nat. Commun.15(1), 5154. 10.1038/s41467-024-49106-2 (2024). PubMed PMC

Wong-Riley, M. T. & Besharse, J. C. The kinesin superfamily protein KIF17: one protein with many functions. Biomol. Concepts3(3), 267–282. 10.1515/bmc-2011-0064 (2012). PubMed PMC

Mann, B. J. & Wadsworth, P. Kinesin-5 regulation and function in mitosis. Trends Cell. Biol.29(1), 66–79. 10.1016/j.tcb.2018.08.004 (2019). PubMed

Giussani, D. A. Breath of life: heart disease link to developmental hypoxia. Circulation144(17), 1429–1443. 10.1161/CIRCULATIONAHA.121.054689 (2021). PubMed PMC

Jiang, X. et al. A differentiation roadmap of murine placentation at single-cell resolution. Cell. Discov.9(1), 30. 10.1038/s41421-022-00513-z (2023). PubMed PMC

Lu, C. et al. Single-cell transcriptome analyses reveal disturbed decidual homoeostasis in obstetric antiphospholipid syndrome. Ann. Rheum. Dis.83(5), 624–637. 10.1136/ard-2023-224930 (2024). PubMed

Kar, M., Ghosh, D. & Sengupta, J. Histochemical and morphological examination of proliferation and apoptosis in human first trimester villous trophoblast. Hum. Reprod.22(11), 2814–2823. 10.1093/humrep/dem284 (2007). PubMed

Knöfler, M. et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell. Mol. Life Sci.76(18), 3479–3496. 10.1007/s00018-019-03104-6 (2019). PubMed PMC

Levy, R. et al. Trophoblast apoptosis from pregnancies complicated by fetal growth restriction is associated with enhanced p53 expression. Am. J. Obstet. Gynecol.186(5), 1056–1061. 10.1067/mob.2002.122250 (2002). PubMed

Liu, T. et al. The role of p53-MDM2 signaling in missed abortion and possible pathogenesis. J. Obstet. Gynaecol. Res.48(11), 2686–2696. 10.1111/jog.15385 (2022). PubMed

Ornoy, A. et al. The effects of antiphospholipid antibodies obtained from women with SLE/APS and associated pregnancy loss on rat embryos and placental explants in culture. Lupus12(7), 573–578. 10.1191/0961203303lu405oa (2003). PubMed

Pantham, P. et al. Antiphospholipid antibodies alter cell-death-regulating lipid metabolites in first and third trimester human placentae. Am. J. Reprod. Immunol.74(2), 181–199. 10.1111/aji.12387 (2015). PubMed

Kumari, R. & Jat, P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front. Cell. Dev. Biol.9, 645593. 10.3389/fcell.2021.645593 (2021). PubMed PMC

Huang, Z. et al. Inactivation of yes-associated protein mediates trophoblast dysfunction: a new mechanism of pregnancy loss associated with anti-phospholipid antibodies?. Biomedicines10(12), 3296. 10.3390/biomedicines10123296 (2022). PubMed PMC

Lu, X. et al. Effect and mechanism of the aβ2–GP I/rhβ2–GP I complex on JEG–3 cell proliferation, migration and invasion. Mol. Med. Rep.17(6), 7505–7512. 10.3892/mmr.2018.8822 (2018). PubMed PMC

Sati, L. et al. The presence of kinesin superfamily motor proteins KIFC1 and KIF17 in normal and pathological human placenta. Placenta30(10), 848–854. 10.1016/j.placenta.2009.07.005 (2009). PubMed

Natale, B. V. et al. Reduced uteroplacental perfusion pressure (RUPP) causes altered trophoblast differentiation and pericyte reduction in the mouse placenta labyrinth. Sci. Rep.8(1), 17162. 10.1038/s41598-018-35606-x (2018). PubMed PMC

Fan, X. et al. VEGF maintains maternal vascular space homeostasis in the mouse placenta through modulation of trophoblast giant cell functions. Biomolecules11(7), 1062. 10.3390/biom11071062 (2021). PubMed PMC

Li, Q. et al. MALAT1 modulates trophoblast phenotype via miR-101-3p/VEGFA axis. Arch. Biochem. Biophys.744, 109692. 10.1016/j.abb.2023.109692 (2023). PubMed

Bobek, G. et al. Quantification of placental change in mouse models of preeclampsia using magnetic resonance microscopy. Eur. J. Histochem.62(2), 2868. 10.4081/ejh.2018.2868 (2018). PubMed PMC

Mayer-Pickel, K. et al. Preeclampsia and the antiphospholipid syndrome. Biomedicines11(8), 2298. 10.3390/biomedicines11082298 (2023). PubMed PMC

Committee on Practice Bulletins-Obstetrics. Gestational hypertension and preeclampsia: ACOG practice bulletin summary, number 222. Obstet. Gynecol.135(6), 1492–1495. 10.1097/AOG.0000000000003892 (2020). PubMed

Opichka, M. A. et al. Vascular dysfunction in preeclampsia. Cells10(11), 3055. 10.3390/cells10113055 (2021). PubMed PMC

Dimitriadis, E. et al. Pre-eclampsia. Nat. Rev. Dis. Primers9(1), 8. 10.1038/s41572-023-00417-6 (2013). Erratum in: Nat. Rev. Dis. Primers9(1), 35. 10.1038/s41572-023-00451-4 (2013).

Von Woon, E. et al. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis. Hum. Reprod. Update28(4), 548–582 10.1093/humupd/dmac006 (2022). PubMed PMC

Moffett, A., Regan, L. & Braude, P. Natural killer cells, miscarriage, and infertility. BMJ329(7477), 1283–1285. 10.1136/bmj.329.7477.1283 (2004). PubMed PMC

Perricone, C. et al. High levels of NK cells in the peripheral blood of patients affected with anti-phospholipid syndrome and recurrent spontaneous abortion: a potential new hypothesis. Rheumatology (Oxford)46(10), 1574–1578. 10.1093/rheumatology/kem197 (2007). PubMed

Carbone, J. et al. Quantitative abnormalities of peripheral blood distinct T, B, and natural killer cell subsets and clinical findings in obstetric antiphospholipid syndrome. J. Rheumatol.36(6), 1217–1225. 10.3899/jrheum.081079 (2009). PubMed

Gomaa, M. F. et al. Uterine CD56dim and CD16 + cells in refractory antiphospholipid antibody-related pregnancy loss and chromosomally intact abortuses: a case-control study. J. Hum. Reprod. Sci.10(1), 18–23. 10.4103/jhrs.JHRS_65_16 (2017). PubMed PMC

Zhang, Y. et al. Increased peripheral NKG2A-NKG2D + CD3-CD16 + CD56dim NK cell subset was positively correlated with antiphospholipid antibodies in patients of obstetric antiphospholipid syndrome. Immunol. Investig.51(2), 425–437. 10.1080/08820139.2020.1835949 (2022). PubMed

Sojka, D. K., Yang, L. & Yokoyama, W. M. Uterine natural killer cells. Front. Immunol.10, 960. 10.3389/fimmu.2019.00960 (2019). PubMed PMC

Xie, M. et al. Uterine natural killer cells: a rising star in human pregnancy regulation. Front. Immunol.1, 13:918550. 10.3389/fimmu.2022.918550 (2022). PubMed PMC

Dean, I. et al. Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity. Nat. Commun.15(1), 683. 10.1038/s41467-024-44789-z (2024). PubMed PMC

Yockey, L. J. & Iwasaki, A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity49(3), 397–412. 10.1016/j.immuni.2018.07.017 (2018). PubMed PMC

Tincani, A. et al. Immunization of naive BALB/c mice with human beta2-glycoprotein I breaks tolerance to the murine molecule. Arthritis Rheum.46(5), 1399–1404. 10.1002/art.10304 (2002). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

NK cell dysfunction in antiphospholipid syndrome

. 2025 ; 16 () : 1593705. [epub] 20250612

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...