NK cell dysfunction in antiphospholipid syndrome

. 2025 ; 16 () : 1593705. [epub] 20250612

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40574865

Antiphospholipid syndrome (APS) is a systemic autoimmune condition characterized by the persistent presence of antiphospholipid antibodies (aPL), and is commonly associated with thrombosis and pregnancy-related complications. To date, relatively little is known about the potential of NK cells in mediating the pathological effects of APS. While the role of NK cells in controlling immune responses and maintaining tissue homeostasis is relatively clear, the fact that they are also linked to various autoimmune conditions is now being highlighted. Given the impact of NK cells on immune regulation, vascular function, and pregnancy outcomes, the unifying message of a critical role for NK cells in APS emerges. As innate immune cells, NK cells might be activated in an antibody dependent manner and exert antibody-dependent cellular cytotoxicity (ADCC). In this process, NK cells recognize and bind to the Fc portion of antibodies that have attached to target cells. With their immunoregulatory properties in the uterus, NK cells play a crucial role in facilitating endometrial tissue remodeling, supporting vascular function, and contributing to placental formation, all of which are essential for a successful pregnancy. In APS, the presence of aPL may disrupt the delicate balance of NK cell-mediated immune regulation leading to alterations in cell activation, cytokine production, and cytotoxic functions. Given the multifactorial nature of NK cells in peripheral blood and uterus, the review provides insight into the potential underlying mechanisms through which NK cells may contribute to thrombosis and pregnancy complications in APS.

Zobrazit více v PubMed

Shi FD, Ljunggren HG, La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol. (2011) 11:658–71. doi:  10.1038/nri3065 PubMed DOI PMC

Fu B, Tian Z, Wei H. Subsets of human natural killer cells and their regulatory effects. Immunology. (2014) 141:483–9. doi:  10.1111/imm.12224 PubMed DOI PMC

Rebuffet L, Melsen JE, Escalière B, Basurto-Lozada D, Bhandoola A, Björkström NK, et al. High-dimensional single-cell analysis of human natural killer cell heterogeneity. Nat Immunol. (2024) 25:1474–88. doi:  10.1038/s41590-024-01883-0 PubMed DOI PMC

Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. (2001) 22:633–40. doi:  10.1016/S1471-4906(01)02060-9 PubMed DOI

Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, et al. Killer Ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. Front Immunol. (2019) 10:1179. doi:  10.1038/s41423-019-0206-4 PubMed DOI PMC

Yang Y, Day J, Souza-Fonseca Guimaraes F, Wicks IP, Louis C. Natural killer cells in inflammatory autoimmune diseases. Clin Transl Immunol. (2021) 10:e1250. doi:  10.1002/cti2.1250 PubMed DOI PMC

Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. (2011) 331:44–9. doi:  10.1126/science.1198687 PubMed DOI PMC

Gaynor LM, Colucci F. Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice. Front Immunol. (2017) 24:467. doi:  10.3389/fimmu.2017.00467 PubMed DOI PMC

Díaz-Hernández I, Alecsandru D, García-Velasco JA, Domínguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update. (2021) 27:720–46. doi:  10.1093/humupd/dmaa062 PubMed DOI

Moffett A, Loke C. Immunology of placentation in eutherian mammals. Nat Rev Immunol. (2006) 6:584–94. doi:  10.1038/nri1897 PubMed DOI

Vacca P, Mingari MC, Moretta L. Natural killer cells in human pregnancy. J Reprod Immunol. (2013) 97:14–9. doi:  10.1016/j.jri.2012.10.008 PubMed DOI

Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. (2018) 563:347–53. doi:  10.1038/s41586-018-0698-6 PubMed DOI PMC

Strunz B, Bister J, Jönsson H, Filipovic I, Crona-Guterstam Y, Kvedaraite E, et al. Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy. Sci Immunol. (2021) 6:eabb7800. doi:  10.1126/sciimmunol.abb7800 PubMed DOI

Chiossone L, Vacca P, Orecchia P, Croxatto D, Damonte P, Astigiano S, et al. PubMed DOI PMC

Manaster I, Mandelboim O. The unique properties of uterine NK cells. Am J Reprod Immunol. (2012) 63:434–44. doi:  10.1111/j.1600-0897.2009.00794.x PubMed DOI

Galarza-Maldonado C, Kourilovitch MR, Pérez-Fernández OM, Gaybor M, Cordero C, Cabrera S, et al. Obstetric antiphospholipid syndrome. Autoimmun Rev. (2012) 11:288–95. doi:  10.1016/j.autrev.2011.10.006 PubMed DOI

Martirosyan A, Aminov R, Manukyan G. Environmental triggers of autoreactive responses: induction of antiphospholipid antibody formation. Front Immunol. (2019) 10:1609. doi:  10.3389/fimmu.2019.01609 PubMed DOI PMC

Knight JS, Branch DW, Ortel TL. Antiphospholipid syndrome: advances in diagnosis, pathogenesis, and management. BMJ. (2023) 380:e069717. doi:  10.1136/bmj-2021-069717 PubMed DOI

Mineo C, Shaul PW, Bermas BL. The pathogenesis of obstetric APS: a 2023 update. Clin Immunol. (2023) 255:109745. doi:  10.1016/j.clim.2023.109745 PubMed DOI PMC

Martirosyan A, Kriegova E, Savara J, Abroyan L, Ghonyan S, Slobodova Z, et al. Impact of antiphospholipid syndrome on placenta and uterine NK cell function: insights from a mouse model. Sci Rep. (2024) 14:31163. doi:  10.1038/s41598-024-82451-2 PubMed DOI PMC

Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. (2005) 6:1123–32. doi:  10.1038/ni1254 PubMed DOI

Blanca IR, Bere EW, Young HA, Ortaldo JR. Human B cell activation by autologous NK cells is regulated by CD40-CD40 ligand interaction: role of memory B cells and CD5+ B cells. J Immunol. (2001) 167:6132–9. doi:  10.4049/jimmunol.167.11.6132 PubMed DOI

Poirot L, Benoist C, Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci U S A. (2004) 101:8102–7. doi:  10.1073/pnas.0402065101 PubMed DOI PMC

Wu L, Wang R, Zhou Y, Zhao D, Chen F, Wu X, et al. Natural killer cells infiltration in the joints exacerbates collagen-induced arthritis. Front Immunol. (2022) 13:860761. doi:  10.3389/fimmu.2022.860761 PubMed DOI PMC

Lo CK, Lam QL, Sun L, Wang S, Ko KH, Xu H, et al. Natural killer cell degeneration exacerbates experimental arthritis in mice via enhanced interleukin-17 production. Arthritis Rheum. (2008) 58:2700–11. doi:  10.1002/art.23760 PubMed DOI

Aggarwal A, Sharma A, Bhatnagar A. Role of cytolytic impairment of natural killer and natural killer T-cell populations in rheumatoid arthritis. Clin Rheumatol. (2014) 33:1067–78. doi:  10.1007/s10067-014-2641-z PubMed DOI

Ames PR, Tommasino C, Fossati G, Matsuura E, Margarita A, Saulino A, et al. Lymphocyte subpopulations and intima media thickness in primary antiphospholipd syndrome. Lupus. (2005) 14:809–13. doi:  10.1191/0961203305lu2181oa PubMed DOI

Simonin L, Pasquier E, Leroyer C, Cornec D, Lemerle J, Bendaoud B, et al. Lymphocyte disturbances in primary antiphospholipid syndrome and application to venous thromboembolism follow-up. Clin Rev Allergy Immunol. (2017) 53:14–27. doi:  10.1007/s12016-016-8568-1 PubMed DOI

Yan H, Li B, Su R, Gao C, Li X, Wang C. Preliminary study on the imbalance between th17 and regulatory T cells in antiphospholipid syndrome. Front Immunol. (2022) 13:873644. doi:  10.3389/fimmu.2022.873644 PubMed DOI PMC

Carbone J, Gallego A, Lanio N, Navarro J, Orera M, Aguaron A, et al. Quantitative abnormalities of peripheral blood distinct T, B, and natural killer cell subsets and clinical findings in obstetric antiphospholipid syndrome. J Rheumatol. (2009) 36:1217–25. doi:  10.3899/jrheum.081079 PubMed DOI

Sarmiento E, Dale J, Arraya M, Gallego A, Lanio N, Navarro J, et al. CD8+DR+ T-cells and C3 complement serum concentration as potential biomarkers in thrombotic antiphospholipid syndrome. Autoimmune Dis. (2014) 2014:868652. doi:  10.1155/2014/868652 PubMed DOI PMC

Kwak JY, Beaman KD, Gilman-Sachs A, Ruiz JE, Schewitz D, Beer AE. Up-regulated expression of CD56+, CD56+/CD16+, and CD19+ cells in peripheral blood lymphocytes in pregnant women with recurrent pregnancy losses. Am J Reprod Immunol. (1995) 34:93–9. doi:  10.1111/j.1600-0897.1995.tb00924.x PubMed DOI

Perricone C, De Carolis C, Giacomelli R, Zaccari G, Cipriani P, Bizzi E, et al. High levels of NK cells in the peripheral blood of patients affected with anti-phospholipid syndrome and recurrent spontaneous abortion: a potential new hypothesis. Rheumatol (Oxford). (2007) 46:1574–8. doi:  10.1093/rheumatology/kem197 PubMed DOI

Heilmann L, Schorch M, Hahn T, Adasz G, Schilberz K, Adiguzel C, et al. Pregnancy outcome in women with antiphospholipid antibodies: report on a retrospective study. Semin Thromb Hemost. (2008) 34:794–802. doi:  10.1055/s-0029-1145261 PubMed DOI

Sherer Y, Levy Y, Shoenfeld Y. Intravenous immunoglobulin therapy of antiphospholipid syndrome. Rheumatol (Oxford). (2000) 39:421–6. doi:  10.1093/rheumatology/39.4.421 PubMed DOI

Tenti S, Cheleschi S, Guidelli GM, Galeazzi M, Fioravanti A. Intravenous immunoglobulins and antiphospholipid syndrome: How, when and why? A review of the literature. Autoimmun Rev. (2016) 15:226–35. doi:  10.1016/j.autrev.2015.11.009 PubMed DOI

Ruiz JE, Kwak JY, Baum L, Gilman-Sachs A, Beaman KD, Kim YB, et al. Effect of intravenous immunoglobulin G on natural killer cell cytotoxicity PubMed DOI

Ahmadi M, Ghaebi M, Abdolmohammadi-Vahid S, Abbaspour-Aghdam S, Hamdi K, Abdollahi-Fard S, et al. NK cell frequency and cytotoxicity in correlation to pregnancy outcome and response to IVIG therapy among women with recurrent pregnancy loss. J Cell Physiol. (2019) 234:9428–37. doi:  10.1002/jcp.27627 PubMed DOI

Chong WP, Ling MT, Liu Y, Caspi RR, Wong WM, Wu W, et al. Essential role of NK cells in IgG therapy for experimental autoimmune encephalomyelitis. PLoS One. (2013) 8:e60862. doi:  10.1371/journal.pone.0060862 PubMed DOI PMC

Bohn AB, Nederby L, Harbo T, Skovbo A, Vorup-Jensen T, Krog J, et al. The effect of IgG levels on the number of natural killer cells and their Fc receptors in chronic inflammatory demyelinating polyradiculoneuropathy. Eur J Neurol. (2011) 18:919–24. doi:  10.1111/j.1468-1331.2010.03333.x PubMed DOI

Mausberg AK, Heininger MK, Meyer Zu Horste G, Cordes S, Fleischer M, Szepanowski F, et al. NK cell markers predict the efficacy of IV immunoglobulins in CIDP. Neurol Neuroimmunol Neuroinflamm. (2020):e884. doi:  10.1212/NXI.0000000000000884 PubMed DOI PMC

Perricone R, Di Muzio G, Perricone C, Giacomelli R, De Nardo D, Fontana L, et al. High levels of peripheral blood NK cells in women suffering from recurrent spontaneous abortion are reverted from high-dose intravenous immunoglobulins. Am J Reprod Immunol. (2006) 55:232–9. doi:  10.1111/j.1600-0897.2005.00356.x PubMed DOI

Zhang X, Wei H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front Immunol. (2021) 12:728291. doi:  10.3389/fimmu.2021.728291 PubMed DOI PMC

Moffett A, Regan L, Braude P. Natural killer cells, miscarriage, and infertility. BMJ (Clinical Res ed.). (2004) 329:1283–5. doi:  10.1136/bmj.329.7477.1283 PubMed DOI PMC

Bunk S, Ponnuswamy P, Trbic A, Malisauskas M, Anderle H, Weber A, et al. IVIG induces apoptotic cell death in CD56dim NK cells resulting in inhibition of ADCC effector activity of human PBMC. Clin Immunol. (2019) 198:62–70. doi:  10.1016/j.clim.2018.10.018 PubMed DOI

Tanimura K, Saito S, Tsuda S, Ono Y, Deguchi M, Nagamatsu T, et al. Low-dose aspirin and heparin treatment improves pregnancy outcome in recurrent pregnancy loss women with anti-β2-glycoprotein I/HLA-DR autoantibodies: a prospective, multicenter, observational study. Front Immunol. (2024) 15:1445852. doi:  10.3389/fimmu.2024.1445852 PubMed DOI PMC

Tektonidou MG, Andreoli L, Limper M, Amoura Z, Cervera R, Costedoat-Chalumeau N, et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheum Dis. (2019) 78:1296–304. doi:  10.1136/annrheumdis-2019-215213 PubMed DOI PMC

Zhang H, Lu J, Jiao Y, Chen Q, Li M, Wang Z, et al. Aspirin inhibits natural killer/T-cell lymphoma by modulation of VEGF expression and mitochondrial function. Front Oncol. (2019) 8:679. doi:  10.3389/fonc.2018.00679 PubMed DOI PMC

Zhang Y, Zhao Y, Si W, Yang B, Lin M, Zheng J, et al. Increased peripheral NKG2A-NKG2D+CD3-CD16+CD56dim NK cell subset was positively correlated with antiphospholipid antibodies in patients of obstetric antiphospholipid syndrome. Immunol Invest. (2022) 51:425–37. doi:  10.1080/08820139.2020.1835949 PubMed DOI

Manukyan G, Kriegova E, Slavik L, Mikulkova Z, Ulehlova J, Martirosyan A, et al. Antiphospholipid antibody-mediated NK cell cytotoxicity. J Reprod Immunol. (2023) 155:103791. doi:  10.1016/j.jri.2022.103791 PubMed DOI

Bertin FR, Rys RN, Mathieu C, Laurance S, Lemarié CA, Blostein MD. Natural killer cells induce neutrophil extracellular trap formation in venous thrombosis. J Thromb Haemost. (2019) 17:403–14. doi:  10.1111/jth.14339 PubMed DOI

Flynn L, Byrne B, Carton J, Kelehan P, O’Herlihy C, O’Farrelly C. Menstrual cycle dependent fluctuations in NK and T-lymphocyte subsets from non-pregnant human endometrium. Am J Reprod Immunol. (2000) 43:209–17. doi:  10.1111/j.8755-8920.2000.430405.x PubMed DOI

Feyaerts D, Benner M, Comitini G, Shadmanfar W, van der Heijden OWH, Joosten I, et al. NK cell receptor profiling of endometrial and decidual NK cells reveals pregnancy-induced adaptations. Front Immunol. (2024) 15:1353556. doi:  10.3389/fimmu.2024.1353556 PubMed DOI PMC

Yang S, Wang H, Li D, Li M. An estrogen-NK cells regulatory axis in endometriosis, related infertility, and miscarriage. Int J Mol Sci. (2024) 25:3362. doi:  10.3390/ijms25063362 PubMed DOI PMC

Nilsson N, Carlsten H. Estrogen induces suppression of natural killer cell cytotoxicity and augmentation of polyclonal B cell activation. Cell Immunol. (1994) 158:131–9. doi:  10.1006/cimm.1994.1262 PubMed DOI

Hao S, Zhao J, Zhou J, Zhao S, Hu Y, Hou Y. Modulation of 17beta-estradiol on the number and cytotoxicity of NK cells PubMed DOI

Deng W, Sun R, Du J, Wu X, Ma L, Wang M, Lv Q. Prediction of miscarriage in first trimester by serum estradiol, progesterone and β-human chorionic gonadotropin within 9 weeks of gestation. BMC Pregnancy Childbirth. (2022) 22:112. doi:  10.1186/s12884-021-04158-w PubMed DOI PMC

Male V, Moffett A. Natural killer cells in the human uterine mucosa. Annu Rev Immunol. (2023) 41:127–51. doi:  10.1146/annurev-immunol-102119-075119 PubMed DOI

Mariee NG, Tuckerman E, Laird S, Li TC. The correlation of autoantibodies and uNK cells in women with reproductive failure. J Reprod Immunol. (2012) 95:59–66. doi:  10.1016/j.jri.2012.04.003 PubMed DOI

Gomaa MF, Elkhouly AG, Farghly MM, Farid LA, Awad NM. Uterine CD56dim and CD16+ Cells in refractory antiphospholipid antibody-related pregnancy loss and chromosomally intact abortuses: A case-control study. J Hum Reprod Sci. (2017) 10:18–23. doi:  10.4103/jhrs.JHRS_65_16 PubMed DOI PMC

Allam M, Hu T, Lee J, Aldrich J, Badve SS, Gökmen-Polar Y. Spatially variant immune infiltration scoring in human cancer tissues. NPJ Precis Oncol. (2022) 6:60. doi:  10.1038/s41698-022-00305-4 PubMed DOI PMC

Alecsandru D, Barrio A, Garrido N, Aparicio P, Pellicer A, Moffett A, et al. Parental human leukocyte antigen-C allotypes are predictive of live birth rate and risk of poor placentation in assisted reproductive treatment. Fertil Steril. (2020) 114:809–17. doi:  10.1016/j.fertnstert.2020.05.008 PubMed DOI

Von Woon E, Greer O, Shah N, Nikolaou D, Johnson M, Male V. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis. Hum Reprod Update. (2022) 28:548–82. doi:  10.1093/humupd/dmac006 PubMed DOI PMC

Judge SJ, Murphy WJ, Canter RJ. Characterizing the dysfunctional NK cell: assessing the clinical relevance of exhaustion, anergy, and senescence. Front Cell Infect Microbiol. (2020) 10:49. doi:  10.3389/fcimb.2020.00049 PubMed DOI PMC

Alvarez M, Simonetta F, Baker J, Pierini A, Wenokur AS, Morrison AR, et al. Regulation of murine NK cell exhaustion through the activation of the DNA damage repair pathway. JCI Insight. (2019) 5:e127729. doi:  10.1172/jci.insight.127729 PubMed DOI PMC

Yamada H, Morikawa M, Kato EH, Shimada S, Kobashi G, Minakami H. Pre-conceptional natural killer cell activity and percentage as predictors of biochemical pregnancy and spontaneous abortion with normal chromosome karyotype. Am J Reprod Immunol (New York N.Y.: 1989). (2003) 50:351–4. doi:  10.1034/j.1600-0897.2003.00095.x PubMed DOI

Du M, Wang W, Huang L, Guan X, Lin W, Yao J, et al. Natural killer cells in the pathogenesis of preeclampsia: a double-edged sword. J Matern Fetal Neonatal Med. 35(2022):1028–35. doi:  10.1080/14767058.2020.1740675 PubMed DOI

Bueno-Sánchez JC, Agudelo-Jaramillo B, Escobar-Aguilerae LF, Lopera A, Cadavid-Jaramillo AP, Chaouat G, et al. Cytokine production by non-stimulated peripheral blood NK cells and lymphocytes in early-onset severe pre-eclampsia without HELLP. J Reprod Immunol. 97(2013):223–31. doi:  10.1016/j.jri.2012.11.007 PubMed DOI

Vinnars MT, Björk E, Nagaev I, Ottander U, Bremme K, Holmlund U, et al. Enhanced Th1 and inflammatory mRNA responses upregulate NK cell cytotoxicity and NKG2D ligand expression in human pre-eclamptic placenta and target it for NK cell attack. Am J Reprod Immunol. 80(2018):e12969. doi:  10.1111/aji.12969 PubMed DOI

Goldman-Wohl D, Yagel S. NK cells and pre-eclampsia. Reprod BioMed Online. 16(2008):227–31. doi:  10.1016/s1472-6483(10)60578-0 PubMed DOI

Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 1221(2011):80–7. doi:  10.1111/j.1749-6632.2010.05938.x PubMed DOI PMC

Wei X, Yang X. The central role of natural killer cells in preeclampsia. Front Immunol. 14(2023):1009867. doi:  10.3389/fimmu.2023.1009867 PubMed DOI PMC

Zhang J, Dunk CE, Shynlova O, Caniggia I, Lye SJ. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine. (2019) 39(2019):531–9. doi:  10.1016/j.ebiom.2018.12.015 PubMed DOI PMC

Wallace AE, Host AJ, Whitley GS, Cartwright JE. Decidual natural killer cell interactions with trophoblasts are impaired in pregnancies at increased risk of preeclampsia. Am J Pathol. 183(2013):1853–61. doi:  10.1016/j.ajpath.2013.08.023 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...