The 12p13.33/RAD52 locus and genetic susceptibility to squamous cell cancers of upper aerodigestive tract
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
R01 CA092039
NCI NIH HHS - United States
R01 CA092039 05/05S1
NCI NIH HHS - United States
R03 DE020116
NIDCR NIH HHS - United States
001
World Health Organization - International
1R03DE020116
NIDCR NIH HHS - United States
PubMed
25793373
PubMed Central
PMC4368781
DOI
10.1371/journal.pone.0117639
PII: PONE-D-14-30874
Knihovny.cz E-zdroje
- MeSH
- demografie MeSH
- DNA opravný a rekombinační protein Rad52 genetika MeSH
- fyzikální mapování chromozomů MeSH
- genetická predispozice k nemoci * MeSH
- genetické lokusy * MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 12 genetika MeSH
- lokus kvantitativního znaku genetika MeSH
- nádory hlavy a krku genetika MeSH
- nádory plic genetika MeSH
- počítačová simulace MeSH
- rizikové faktory MeSH
- spinocelulární karcinom genetika MeSH
- studie případů a kontrol MeSH
- zárodečné buňky MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA opravný a rekombinační protein Rad52 MeSH
- RAD52 protein, human MeSH Prohlížeč
Genetic variants located within the 12p13.33/RAD52 locus have been associated with lung squamous cell carcinoma (LUSC). Here, within 5,947 UADT cancers and 7,789 controls from 9 different studies, we found rs10849605, a common intronic variant in RAD52, to be also associated with upper aerodigestive tract (UADT) squamous cell carcinoma cases (OR = 1.09, 95% CI: 1.04-1.15, p = 6x10(-4)). We additionally identified rs10849605 as a RAD52 cis-eQTL inUADT(p = 1x10(-3)) and LUSC (p = 9x10(-4)) tumours, with the UADT/LUSC risk allele correlated with increased RAD52 expression levels. The 12p13.33 locus, encompassing rs10849605/RAD52, was identified as a significant somatic focal copy number amplification in UADT(n = 374, q-value = 0.075) and LUSC (n = 464, q-value = 0.007) tumors and correlated with higher RAD52 tumor expression levels (p = 6x10(-48) and p = 3x10(-29) in UADT and LUSC, respectively). In combination, these results implicate increased RAD52 expression in both genetic susceptibility and tumorigenesis of UADT and LUSC tumors.
Biostatistics group Lyon France
Cancer Registry of Norway Oslo Norway
Catalan Institute of Oncology ICO IDIBELL L'Hospitalet de Llobregat Barcelona Spain
Centro di Riferimento Oncologico IRCSS Unit of Epidemiology and Biostatistics Aviano Italy
Croatian National Cancer Registry Croatian National Institute of Public Health Zagreb Croatia
Department of Epidemiology Institute of Occupational Medicine Lodz Poland
Department of Health Promotion Division of Oral Pathology Kyushu Dental University Kitakyushu Japan
Dept of Molecular Oncology Cancer Institute Chennai Tamil Nadu India
General Hospital of Pordenone Pordenone Italy
Genetic Cancer Susceptibility group Lyon France
Genetic Epidemiology group Human Genetics Unit Edinburgh United Kingdom
Genetic Epidemiology group Lyon France
Infections and Cancer Epidemiology group Lyon France
Institute of Carcinogenesis Cancer Research Centre Moscow Russian Federation
Institute of Oncology and Radiobiology Havana Cuba
International Prevention Research Institute Ecully France
National School of Public Health FIOCRUZ Rio de Janeiro Brazil
Palacky University Olomouc Czech Republic
Regional Authority of Public Health Banska Bystrica Slovakia
School of Medicine and Dentistry University of Aberdeen Aberdeen United Kingdom
The Tisch Cancer Institute Mount Sinai School of Medicine New York NY United States of America
Trinity College School of Dental Science Dublin Ireland
Universidade de Sao Paulo Sao Paulo Brazil
Universidade Federal de Pelotas Pelotas Brazil
University of Glasgow Dental School Glasgow Scotland United Kingdom
University of Manchester School of Dentistry Manchester United Kingdom
University of Turin Department of Medical Sciences Unit of Cancer Epidemiology Turin Italy
Zobrazit více v PubMed
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, et al. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127: 2893–2917. 10.1002/ijc.25516 PubMed DOI
Stewart B, Kleihues P (2003) World Cancer Report: IARC Press.
McKay JD, Truong T, Gaborieau V, Chabrier A, Chuang SC, et al. (2011) A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium. PLoS Genet 7: e1001333 10.1371/journal.pgen.1001333 PubMed DOI PMC
Negri E, Boffetta P, Berthiller J, Castellsague X, Curado MP, et al. (2009) Family history of cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Int J Cancer 124: 394–401. 10.1002/ijc.23848 PubMed DOI PMC
Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374. PubMed
Scully C, Field JK, Tanzawa H (2000) Genetic aberrations in oral or head and neck squamous cell carcinoma (SCCHN): 1. Carcinogen metabolism, DNA repair and cell cycle control. Oral Oncol 36: 256–263. PubMed
Thacker J (1999) The role of homologous recombination processes in the repair of severe forms of DNA damage in mammalian cells. Biochimie 81: 77–85. PubMed
Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7: 739–750. PubMed
Liu J, Heyer WD (2011) Who's who in human recombination: BRCA2 and RAD52. Proc Natl Acad Sci U S A 108: 441–442. 10.1073/pnas.1016614108 PubMed DOI PMC
Baumann P, West SC (1998) Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci 23: 247–251. PubMed
Shi J, Chatterjee N, Rotunno M, Wang Y, Pesatori AC, et al. (2012) Inherited variation at chromosome 12p13.33, including RAD52, influences the risk of squamous cell lung carcinoma. Cancer Discov 2: 131–139. 10.1158/2159-8290.CD-11-0246 PubMed DOI PMC
Timofeeva MN, Hung RJ, Rafnar T, Christiani DC, Field JK, et al. (2012) Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet 21: 4980–4995. 10.1093/hmg/dds334 PubMed DOI PMC
Yan W, Wistuba II, Emmert-Buck MR, Erickson HS (2011) Squamous Cell Carcinoma—Similarities and Differences among Anatomical Sites. Am J Cancer Res 1: 275–300. PubMed PMC
Anantharaman D, Chabrier A, Gaborieau V, Franceschi S, Herrero R, et al. (2014) Genetic variants in nicotine addiction and alcohol metabolism genes, oral cancer risk and the propensity to smoke and drink alcohol: a replication study in India. PLoS One 9: e88240 10.1371/journal.pone.0088240 PubMed DOI PMC
Oze I, Matsuo K, Hosono S, Ito H, Kawase T, et al. (2010) Comparison between self-reported facial flushing after alcohol consumption and ALDH2 Glu504Lys polymorphism for risk of upper aerodigestive tract cancer in a Japanese population. Cancer Sci 101: 1875–1880. 10.1111/j.1349-7006.2010.01599.x PubMed DOI PMC
Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31: 3812–3814. PubMed PMC
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 248–249. 10.1038/nmeth0410-248 PubMed DOI PMC
Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, et al. (2013) Ensembl 2013. Nucleic Acids Res 41: D48–55. 10.1093/nar/gks1236 PubMed DOI PMC
Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, et al. (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics (11): 587. PubMed PMC
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904–909. PubMed
Yu K, Wang Z, Li Q, Wacholder S, Hunter DJ, et al. (2008) Population substructure and control selection in genome-wide association studies. PLoS One 3: e2551 10.1371/journal.pone.0002551 PubMed DOI PMC
Li Q, Seo JH, Stranger B, McKenna A, Pe'er I, et al. (2013) Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152: 633–641. 10.1016/j.cell.2012.12.034 PubMed DOI PMC
Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, et al. (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848–853. PubMed PMC
Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28: 1057–1068. 10.1038/nbt.1685 PubMed DOI
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959. PubMed PMC
Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–861. PubMed PMC
Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, et al. (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A 104: 20007–20012. PubMed PMC
Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, et al. (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12: R41 10.1186/gb-2011-12-4-r41 PubMed DOI PMC
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628. 10.1038/nmeth.1226 PubMed DOI
Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11: R25 10.1186/gb-2010-11-3-r25 PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC
Smyth G (2005) Bioinformatics and Computational Biology Solutions Using R and Bioconductor. In: R Gentleman VC, W. Huber, R. Irizarry, S. Dudoit editor. pp. 397–420.
Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66: 630–670, table of contents. PubMed PMC
Lok BH, Powell SN (2012) Molecular pathways: understanding the role of Rad52 in homologous recombination for therapeutic advancement. Clin Cancer Res 18: 6400–6406. 10.1158/1078-0432.CCR-11-3150 PubMed DOI PMC
Lok BH, Carley AC, Tchang B, Powell SN (2013) RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination. Oncogene 32: 3552–3558. 10.1038/onc.2012.391 PubMed DOI PMC
Feng Z, Scott SP, Bussen W, Sharma GG, Guo G, et al. (2011) Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc Natl Acad Sci U S A 108: 686–691. 10.1073/pnas.1010959107 PubMed DOI PMC
Cramer-Morales K, Nieborowska-Skorska M, Scheibner K, Padget M, Irvine DA, et al. (2013) Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile. Blood 122: 1293–1304. 10.1182/blood-2013-05-501072 PubMed DOI PMC
Wang Y, McKay JD, Rafnar T, Wang Z, Timofeeva MN, et al. (2014) Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet 46: 736–741. 10.1038/ng.3002 PubMed DOI PMC
Delahaye-Sourdeix M, Anantharaman D, Timofeeva M, Gaborieau V, Chabrier A, et al. (2015) A rare truncating BRCA2 variant and genetic susceptibility to upper aerodigestive tract cancer. J Natl Cancer Inst. (in press) PubMed PMC