A simple model for the influence of habitat resource availability on lateral clonal spread
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25833862
PubMed Central
PMC4426633
DOI
10.1098/rspb.2015.0327
PII: rspb.2015.0327
Knihovny.cz E-zdroje
- Klíčová slova
- below-ground resource availability, clonal growth, clonal plants, lateral spread, model, self-generated heterogeneity,
- MeSH
- biologické modely * MeSH
- ekosystém * MeSH
- fyziologie rostlin * MeSH
- oddenek růst a vývoj fyziologie MeSH
- populační dynamika MeSH
- půda MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
Plant clonal spread is ubiquitous and of great interest, owing both to its key role in plant community assembly and its suitability for plant behaviour research. However, mechanisms that govern spreading distance are not well known. Here we link spacer costs and below-ground competition in a simple model of growth in a homogeneous below-ground environment, in which optimal distance between ramets is based on minimizing the sum of these costs. Using this model, we predict a high prevalence of clonal growth that does not employ spacers in resource-poor environments and a nonlinear increase in spreading distance in response to increasing below-ground resource availability. Analysis of database data on clonal growth in relationship to below-ground resource availability revealed that patterns of the spread based on stolons is compatible with the model's predictions. As expected, model prediction failed for rhizomatous species, where spacer sizes are likely to be selected mainly to play roles other than spread. The model's simplicity makes it useful as a null model in testing hypotheses about the effects of environmental heterogeneity on clonal spread.
Zobrazit více v PubMed
Klimeš L, Klimešová J, Hendriks R, van Groenendael J. 1997. Clonal plant architecture: a comparative analysis of form and function. In The ecology and evolution of clonal plants (eds De Kroon H, van Groenendael J.), pp. 1–29. Leiden, The Netherlands: Backhuys Publishers.
Klimešová J, Klimeš L. 2008. Clonal growth diversity and bud banks of plants in the Czech flora: an evaluation using the CLO-PLA3 database. Preslia 80, 255–275.
Klimešová J, Doležal J, Sammul M. 2011. Evolutionary and organismic constraints on the relationship between spacer length and environmental conditions in clonal plants. Oikos 120, 1110–1120. (10.1111/j.1600-0706.2011.19332.x) DOI
Groenendael JMV, Klimeš L, Klimešova J, Hendriks RJJ. 1996. Comparative ecology of clonal plants. Phil. Trans. R. Soc. Lond. B 351, 1331–1339. (10.1098/rstb.1996.0116) DOI
Watt AS. 1940. Contributions to the ecology of bracken (Pteridium aquilinum). I. The rhizome. New Phytol. 39, 401–422. (10.2307/2428954) DOI
Hartnett DC, Bazzaz FA. 1983. Physiological integration among intraclonal ramets in Solidago canadensis. Ecology 64, 779–788. (10.2307/1937201) DOI
Stuefer JF. 1998. Two types of division of labour in clonal plants: benefits, costs and constraints. Perspect. Plant Ecol. Evol. Syst. 1, 47–60. (10.1078/1433-8319-00051) DOI
Caraco T, Kelly CK. 1991. On the adaptive value of physiological integraton in clonal plants. Ecology 72, 81–93. (10.2307/1938904) DOI
Chesson P, Peterson AG. 2002. The quantitative assessment of the benefits of physiological integration in clonal plants. Evol. Ecol. Res. 4, 1153–1176.
Evans JP, Cain ML. 1995. A spatially explicit test of foraging behavior in a clonal plant. Ecology 76, 1147–1155. (10.2307/1940922) DOI
Hutchings MJ, Wijesinghe DK. 1997. Patchy habitats, division of labour and growth dividends in clonal plants. Trends Ecol. Evol. 12, 390–394. (10.1016/S0169-5347(97)87382-X) PubMed DOI
Gao Y, Xing F, Jin Y, Nie D, Wang Y. 2012. Foraging responses of clonal plants to multi-patch environmental heterogeneity: spatial preference and temporal reversibility. Plant Soil 359, 137–147. (10.1007/s11104-012-1148-0) DOI
Oborny B, Mony C, Herben T. 2012. From virtual plants to real communities: a review of modelling clonal growth. Ecol. Model. 234, 3–19. (10.1016/j.ecolmodel.2012.03.010) DOI
Law R, Dieckmann U. 2000. A dynamical system for neighborhoods in plant communities. Ecology 81, 2137–2148. (10.1890/0012-9658(2000)081[2137:ADSFNI]2.0.CO;2) DOI
Herben T. 2004. Physiological integration affects growth form and competitive ability in clonal plants. Evol. Ecol. 18, 493–520. (10.1007/s10682-004-5141-9) DOI
De Kroon H, Schieving F. 1990. Resource partitioning in relation to clonal growth strategy. In Clonal growth in plants: regulation and function (eds van Groenendael J, de Kroon H.), pp. 113–130. The Hague, The Netherlands: SPB Academic Publishing.
Herben T, Novoplansky A. 2007. Implications of self/non-self discrimination for spatial patterning of clonal plants. Evol. Ecol. 22, 337–350. (10.1007/s10682-007-9214-4) DOI
Suzuki J-I, Stuefer J. 1999. On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biol. 14, 11–17. (10.1046/j.1442-1984.1999.00002.x) DOI
Ellenberg H. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. 2. verb. und erw. Aufl Göttingen: Goltze.
Schwinning S, Weiner J. 1998. Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113, 447–455. (10.1007/s004420050397) PubMed DOI
Novoplansky A, Cohen D. 1997. The mutual distribution of competing root systems. In Biology of root formation and development (eds Altman A, Waisel Y.), pp. 353–364. New York, NY: Springer US.
Schenk HJ, Jackson RB. 2002. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480–494. (10.1046/j.1365-2745.2002.00682.x) DOI
O'Brien EE, Brown JS, Moll JD. 2007. Roots in space: a spatially explicit model for below-ground competition in plants. Proc. R. Soc. B 274, 929–935. (10.1098/rspb.2006.0113) PubMed DOI PMC
Dong M, Pierdominici MG. 1995. Morphology and growth of stolons and rhizomes in three clonal grasses, as affected by different light supply. Vegetatio 116, 25–32. (10.2307/20046534) DOI
Klimešová J, Klimeš L. CLO-PLA3—database of clonal growth of plants from Central Europe. See http://clopla.butbn.cas.cz/ (accessed February 2013)
Dong M, de Kroon H. 1994. Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass species forming stolons and rhizomes. Oikos 70, 99–106. (10.2307/3545704) DOI
R Development Core Team. 2010. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Landa K, Benner B, Watson MA, Gartner J. 1992. Physiological integration for carbon in mayapple (Podophyllum peltatum), a clonal perennial herb. Oikos 63, 348–356. (10.2307/3544960) DOI
Yu F-H, Wang N, He W-M, Chu Y, Dong M. 2008. Adaptation of rhizome connections in drylands: increasing tolerance of clones to wind erosion. Ann. Bot. 102, 571–577. (10.1093/aob/mcn119) PubMed DOI PMC
Stuefer, Huber 1999. The role of stolon internodes for ramet survival after clone fragmentation in Potentilla anserina. Ecol. Lett. 2, 135–139. (10.1046/j.1461-0248.1999.00066.x) DOI
Dong B-C, Yu G-L, Guo W, Zhang M-X, Dong M, Yu F-H. 2010. How internode length, position and presence of leaves affect survival and growth of Alternanthera philoxeroides after fragmentation? Evol. Ecol. 24, 1447–1461. (10.1007/s10682-010-9390-5) DOI
Schenk HJ, Jackson RB. 2002. The global biogeography of roots. Ecol. Monogr. 72, 311–328. (10.2307/3100092) DOI
Kutschera L, Sobotik M, Lichtenegger E. 1997. Wurzeln. Bewurzelung von Pflanzen in den verschiedenen Lebensräumen. Linz: Oberösterreichisches Landesmuseum.
Sachs T, Novoplansky A, Cohen D. 1993. Plants as competing populations of redundant organs. Plant Cell Environ. 16, 765–770. (10.1111/j.1365-3040.1993.tb00498.x) DOI
Falik O, Reides P, Gersani M, Novoplansky A. 2003. Self/non-self discrimination in roots. J. Ecol. 91, 525–531. (10.1046/j.1365-2745.2003.00795.x) DOI
Semchenko M, John EA, Hutchings MJ. 2007. Effects of physical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytol. 176, 644–654. (10.1111/j.1469-8137.2007.02211.x) PubMed DOI
Gruntman M, Novoplansky A. 2004. Physiologically mediated self/non-self discrimination in roots. Proc. Natl Acad. Sci. USA 101, 3863–3867. (10.1073/pnas.0306604101) PubMed DOI PMC
Casper BB, Schenk HJ, Jackson RB. 2003. Defining a plant's belowground zone of influence. Ecology 84, 2313–2321. (10.1890/02-0287) DOI
Alpert P, Holzapfel C, Slominski C. 2003. Differences in performance between genotypes of Fragaria chiloensis with different degrees of resource sharing. J. Ecol. 91, 27–35. (10.1046/j.1365-2745.2003.00737.x) DOI
Van Kleunen M, Fischer M, Schmid B. 2000. Clonal integration in Ranunculus reptans: by-product or adaptation? J. Evol. Biol. 13, 237–248. (10.1046/j.1420-9101.2000.00161.x) DOI
Weijschedé J, Berentsen R, de Kroon H, Huber H. 2008. Variation in petiole and internode length affects plant performance in Trifolium repens under opposing selection regimes. Evol. Ecol. 22, 383–397. (10.1007/s10682-007-9224-2) DOI
Pecháčková S, During HJ, Rydlová V, Herben T. 1999. Species-specific spatial pattern of below-ground plant parts in a montane grassland community. J. Ecol. 87, 569–582. (10.1046/j.1365-2745.1999.00375.x) DOI
Song Y-B, Yu F-H, Keser L, Dawson W, Fischer M, Dong M, van Kleunen M. 2013. United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia 171, 317–327. (10.1007/s00442-012-2430-9) PubMed DOI
Bonanomi G, Incerti G, Stinca A, Cartenì F, Giannino F, Mazzoleni S. 2014. Ring formation in clonal plants. Community Ecol. 15, 77–86. (10.1556/ComEc.15.2014.1.8) DOI
Watt AS. 1947. Pattern and process in the plant community. J. Ecol. 35, 1–22. (10.2307/2256497) DOI
Lovett Doust L. 1981. Population dynamics and local specialization in a clonal perennial (Ranunculus repens). I. The dynamics of ramets in contrasting habitats. J. Ecol. 69, 743–755. (10.2307/2259633) DOI
Tamm A, Kull K, Sammul M. 2001. Classifying clonal growth forms based on vegetative mobility and ramet longevity: a whole community analysis. Evol. Ecol. 15, 383–401. (10.1023/A:1016093116926) DOI
Zobel M, Moora M, Herben T. 2010. Clonal mobility and its implications for spatio-temporal patterns of plant communities: what do we need to know next? Oikos 119, 802–806. (10.1111/j.1600-0706.2010.18296.x) DOI
Huber H, Stuefer JF. 1997. Shade-induced changes in the branching pattern of a stoloniferous herb: functional response or allometric effect? Oecologia 110, 478–486. (10.1007/s004420050183) PubMed DOI
Louâpre P, Bittebière A-K, Clément B, Pierre J-S, Mony C. 2012. How past and present influence the foraging of clonal plants? PLoS ONE 7, e38288 (10.1371/journal.pone.0038288) PubMed DOI PMC