Pre-amplification in the context of high-throughput qPCR gene expression experiment

. 2015 Mar 11 ; 16 () : 5. [epub] 20150311

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25888347
Odkazy

PubMed 25888347
PubMed Central PMC4365555
DOI 10.1186/s12867-015-0033-9
PII: 10.1186/s12867-015-0033-9
Knihovny.cz E-zdroje

BACKGROUND: With the introduction of the first high-throughput qPCR instrument on the market it became possible to perform thousands of reactions in a single run compared to the previous hundreds. In the high-throughput reaction, only limited volumes of highly concentrated cDNA or DNA samples can be added. This necessity can be solved by pre-amplification, which became a part of the high-throughput experimental workflow. Here, we focused our attention on the limits of the specific target pre-amplification reaction and propose the optimal, general setup for gene expression experiment using BioMark instrument (Fluidigm). RESULTS: For evaluating different pre-amplification factors following conditions were combined: four human blood samples from healthy donors and five transcripts having high to low expression levels; each cDNA sample was pre-amplified at four cycles (15, 18, 21, and 24) and five concentrations (equivalent to 0.078 ng, 0.32 ng, 1.25 ng, 5 ng, and 20 ng of total RNA). Factors identified as critical for a success of cDNA pre-amplification were cycle of pre-amplification, total RNA concentration, and type of gene. The selected pre-amplification reactions were further tested for optimal Cq distribution in a BioMark Array. The following concentrations combined with pre-amplification cycles were optimal for good quality samples: 20 ng of total RNA with 15 cycles of pre-amplification, 20x and 40x diluted; and 5 ng and 20 ng of total RNA with 18 cycles of pre-amplification, both 20x and 40x diluted. CONCLUSIONS: We set up upper limits for the bulk gene expression experiment using gene expression Dynamic Array and provided an easy-to-obtain tool for measuring of pre-amplification success. We also showed that variability of the pre-amplification, introduced into the experimental workflow of reverse transcription-qPCR, is lower than variability caused by the reverse transcription step.

Zobrazit více v PubMed

Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One. 2008;3:e1662. doi: 10.1371/journal.pone.0001662. PubMed DOI PMC

BioMark™ HD System. [http://www.fluidigm.com/biomark-hd-system.html]

Real-Time PCR Using OpenArray® Technology. [http://www.lifetechnologies.com/au/en/home/life-science/pcr/real-time-pcr/real-time-openarray.html?icid=fr-openarray-main%20http://www.lifetechnologies.com/au/en/home/life-science/pcr/real-time-pcr/real-time-openarray.html?icid=fr-openarray-main]

SmartChip Real-Time PCR System. [http://www.wafergen.com/products/smartchip-realtime-pcr-system]

Mengual L, Burset M, Marin-Aguilera M, Ribal MJ, Alcaraz A. Multiplex preamplification of specific cDNA targets prior to gene expression analysis by TaqMan Arrays. BMC Res notes. 2008;1:21. doi: 10.1186/1756-0500-1-21. PubMed DOI PMC

Blow N. PCR’s next frontier. Nat Meth. 2007;4:869–75. doi: 10.1038/nmeth1007-869. DOI

Iscove NN, Barbara M, Gu M, Gibson M, Modi C, Winegarden N. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol. 2002;20:940–3. doi: 10.1038/nbt729. PubMed DOI

Noutsias M, Rohde M, Block A, Klippert K, Lettau O, Blunert K, et al. Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies. BMC Mol Biol. 2008;9:3. doi: 10.1186/1471-2199-9-3. PubMed DOI PMC

Sindelka R, Sidova M, Svec D, Kubista M. Spatial expression profiles in the Xenopus laevis oocytes measured with qPCR tomography. Methods (San Diego, Calif) 2010;51:87–91. doi: 10.1016/j.ymeth.2009.12.011. PubMed DOI

Fluidigm. Real-Time PCR Analysis, Appendix B: Fast Gene Expression Analysis Using EvaGreen on the BioMark of BioMark HD System, part No. 68000088. [https://www.fluidigm.com/documents]

TaqMan PreAmp Master Mix Kit, Protocol. [http://tools.lifetechnologies.com/content/sfs/manuals/cms_039316.pdf]

Targeted Enrichment of Limited RNA Samples via Pre-Amplification Prior to Analysis in the WaferGen SmartChip Real-Time PCR System. [http://www.wafergen.com/wp-content/uploads/2013/01/TargetEnrchmnt_RNA_TNf.pdf]

OpenArray Plates for microRNA expression analysis. [http://tools.lifetechnologies.com/content/sfs/manuals/cms_092509.pdf]

Johnson G, Nour AA, Nolan T, Huggett J, Bustin S. Minimum information necessary for quantitative real-time PCR experiments. Methods Mol Biol (Clifton, NJ) 2014;1160:5–17. doi: 10.1007/978-1-4939-0733-5_2. PubMed DOI

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Rusnakova V, Honsa P, Dzamba D, Stahlberg A, Kubista M, Anderova M. Heterogeneity of astrocytes: from development to injury - single cell gene expression. PLoS One. 2013;8:e69734. doi: 10.1371/journal.pone.0069734. PubMed DOI PMC

Laurell H, Iacovoni JS, Abot A, Svec D, Maoret JJ, Arnal JF, et al. Correction of RT-qPCR data for genomic DNA-derived signals with ValidPrime. Nucleic Acids Res. 2012;40:e51. doi: 10.1093/nar/gkr1259. PubMed DOI PMC

Stahlberg A, Kubista M. The workflow of single-cell expression profiling using quantitative real-time PCR. Expert Rev Mol Diagn. 2014;14:323–31. doi: 10.1586/14737159.2014.901154. PubMed DOI PMC

Fluidigm. Fluidigm Gene Expression Specific Target Amplification Quick Reference, part No. 68000133. [https://www.fluidigm.com/documents]

Fluidigm. BioMark Advanced Development Protocol Number 5: Single-Cell Gene Expression Protocol for the BioMark 48.48 Dynamic Array–Real-Time PCR, part No. 68000107. [https://www.fluidigm.com/documents]

Stahlberg A, Bengtsson M. Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods (San Diego, Calif) 2010;50:282–8. doi: 10.1016/j.ymeth.2010.01.002. PubMed DOI

Chen Y, Gelfond JA, McManus LM, Shireman PK. Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics. 2009;10:407. doi: 10.1186/1471-2164-10-407. PubMed DOI PMC

Li J, Smyth P, Cahill S, Denning K, Flavin R, Aherne S, et al. Improved RNA quality and TaqMan Pre-amplification method (PreAmp) to enhance expression analysis from formalin fixed paraffin embedded (FFPE) materials. BMC Biotechnol. 2008;8:10. doi: 10.1186/1472-6750-8-10. PubMed DOI PMC

Fox BC, Devonshire AS, Baradez MO, Marshall D, Foy CA. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis. Anal Biochem. 2012;427:178–86. doi: 10.1016/j.ab.2012.05.010. PubMed DOI

Bengtsson M, Hemberg M, Rorsman P, Stahlberg A. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Mol Biol. 2008;9:63. doi: 10.1186/1471-2199-9-63. PubMed DOI PMC

Devonshire AS, Elaswarapu R, Foy CA. Applicability of RNA standards for evaluating RT-qPCR assays and platforms. BMC Genomics. 2011;12:118. doi: 10.1186/1471-2164-12-118. PubMed DOI PMC

Jang JS, Kolbert C, Jen J. High throughput quantitative PCR using low-input samples for mRNA and MicroRNA gene expression analyses [abstract] J Biomol Tech. 2013;24:S56.

Svec D, Rusnakova V, Korenkova V, Kubista M. Dye-Based High-Throughput qPCR in Microfluidic Platform BioMark™. In: Nolan T, Bustin SA, editors. PCR Technology: Current Innovations. 3. Boca Raton: CRC Press; 2013. pp. 323–36.

Sorg D, Danowski K, Korenkova V, Rusnakova V, Kuffner R, Zimmer R, et al. Microfluidic high-throughput RT-qPCR measurements of the immune response of primary bovine mammary epithelial cells cultured from milk to mastitis pathogens. Animal. 2013;7:799–805. doi: 10.1017/S1751731112002315. PubMed DOI

Perkel JM. Microfluidics, macro-impacts. Biotechniques. 2012;52:131–4. PubMed

Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques. 1998;24:954–8. PubMed

Stahlberg A, Hakansson J, Xian X, Semb H, Kubista M. Properties of the reverse transcription reaction in mRNA quantification. Clin Chem. 2004;50:509–15. doi: 10.1373/clinchem.2003.026161. PubMed DOI

Primer-BLAST. [http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome]

Jolliffe IT. Principal Component Analysis. 2. Springer-Verlag New York: Springer; 2002.

Kohonen Teuvo . Self-Organizing Maps. 3. Springer-Verlag Berlin Heidelberg: Springer; 2001.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tutorial: Guidelines for Single-Cell RT-qPCR

. 2021 Sep 30 ; 10 (10) : . [epub] 20210930

The focus on sample quality: Influence of colon tissue collection on reliability of qPCR data

. 2016 Jul 07 ; 6 () : 29023. [epub] 20160707

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...