The focus on sample quality: Influence of colon tissue collection on reliability of qPCR data
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
27383461
PubMed Central
PMC4935944
DOI
10.1038/srep29023
PII: srep29023
Knihovny.cz E-zdroje
- MeSH
- DNA nádorová genetika MeSH
- DNA-topoisomerasy I genetika MeSH
- dusík MeSH
- fixace tkání metody MeSH
- karcinom chemie chirurgie MeSH
- kolon chemie MeSH
- kryoprezervace přístrojové vybavení metody MeSH
- kvantitativní polymerázová řetězová reakce přístrojové vybavení metody MeSH
- lidé MeSH
- nádorové proteiny biosyntéza genetika MeSH
- nádory tračníku chemie chirurgie MeSH
- ochrana biologická přístrojové vybavení metody MeSH
- odběr biologického vzorku přístrojové vybavení metody MeSH
- regulace genové exprese u nádorů MeSH
- reprodukovatelnost výsledků MeSH
- ribozomální DNA genetika MeSH
- řízení kvality MeSH
- RNA nádorová analýza genetika izolace a purifikace MeSH
- RNA ribozomální 18S genetika MeSH
- roztoky pro uchovávání orgánů MeSH
- rychlé screeningové testy přístrojové vybavení metody MeSH
- stanovení celkové genové exprese metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA nádorová MeSH
- DNA-topoisomerasy I MeSH
- dusík MeSH
- nádorové proteiny MeSH
- ribozomální DNA MeSH
- RNA nádorová MeSH
- RNA ribozomální 18S MeSH
- roztoky pro uchovávání orgánů MeSH
- TOP1 protein, human MeSH Prohlížeč
Successful molecular analyses of human solid tissues require intact biological material with well-preserved nucleic acids, proteins, and other cell structures. Pre-analytical handling, comprising of the collection of material at the operating theatre, is among the first critical steps that influence sample quality. The aim of this study was to compare the experimental outcomes obtained from samples collected and stored by the conventional means of snap freezing and by PAXgene Tissue System (Qiagen). These approaches were evaluated by measuring rRNA and mRNA integrity of the samples (RNA Quality Indicator and Differential Amplification Method) and by gene expression profiling. The collection procedures of the biological material were implemented in two hospitals during colon cancer surgery in order to identify the impact of the collection method on the experimental outcome. Our study shows that the pre-analytical sample handling has a significant effect on the quality of RNA and on the variability of qPCR data. PAXgene collection mode proved to be more easily implemented in the operating room and moreover the quality of RNA obtained from human colon tissues by this method is superior to the one obtained by snap freezing.
Biomedical Centre Medical School Pilsen Charles University Prague Pilsen Czech Republic
Institute of Experimental Medicine Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Markets and Markets. Cancer/Tumor Profiling Market worth $35.03 Billion by 2018. Available at: http://www.marketsandmarkets.com/PressReleases/cancer-tumor-profiling.asp (Accessed: 19th January 2016) (2016).
Moorcraft S. Y., Smyth E. C. & Cunningham D. The role of personalized medicine in metastatic colorectal cancer: an evolving landscape. Therapeutic advances in gastroenterology 6, 381–395 (2013). PubMed PMC
Mohelnikova-Duchonova B., Melichar B. & Soucek P. FOLFOX/FOLFIRI pharmacogenetics: The call for a personalized approach in colorectal cancer therapy. World journal of gastroenterology 20, 10316–10330 (2014). PubMed PMC
Dougherty E. R. Biomarker development: prudence, risk, and reproducibility. BioEssays: news and reviews in molecular, cellular and developmental biology 34, 277–279 (2012). PubMed
McShane L. M. & Polley M. Y. Development of omics-based clinical tests for prognosis and therapy selection: the challenge of achieving statistical robustness and clinical utility. Clinical trials 10, 653–665 (2013). PubMed PMC
Hayes D. F. et al.. Breaking a vicious cycle. Science translational medicine 5, 196CM6 (2013). PubMed
Johnson G., Nour A. A., Nolan T., Huggett J. & Bustin S. Minimum information necessary for quantitative real-time PCR experiments. Methods in molecular biology 1160, 5–17, (2014). PubMed
Verderio P. Assessing the clinical relevance of oncogenic pathways in neoadjuvant breast cancer. Journal of clinical oncology 30, 1912–1915 (2012). PubMed
Bustin S. A. et al.. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical chemistry 55, 611–622 (2009). PubMed
Carraro P. & Plebani M. Errors in a stat laboratory: types and frequencies 10 years later. Clinical chemistry 53, 1338–1342 (2007). PubMed
Kristensen G. B., Aakre K. M., Kristoffersen A. H. & Sandberg S. How to conduct External Quality Assessment Schemes for the pre-analytical phase? Biochemia medica 24, 114–122 (2014). PubMed PMC
Ma Y., Dai H. & Kong X. Impact of warm ischemia on gene expression analysis in surgically removed biosamples. Analytical biochemistry 423, 229–235 (2012). PubMed
Lin D. W. et al.. Influence of surgical manipulation on prostate gene expression: implications for molecular correlates of treatment effects and disease prognosis. Journal of clinical oncology 24, 3763–3770 (2006). PubMed
Musella V. et al.. Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa. PloS one 8, e53406 (2013). PubMed PMC
Hong S. H. et al.. Effects of delay in the snap freezing of colorectal cancer tissues on the quality of DNA and RNA. Journal of the Korean Society of Coloproctology 26, 316–323 (2010). PubMed PMC
Spruessel A. et al.. Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. BioTechniques 36, 1030–1037 (2004). PubMed
Yamagishi A. et al.. Gene profiling and bioinformatics analyses reveal time course differential gene expression in surgically resected colorectal tissues. Oncology reports 31, 1531–1538 (2014). PubMed PMC
Viana C. R. et al.. The interference of cold ischemia time in the quality of total RNA from frozen tumor samples. Cell and tissue banking 14, 167–173 (2013). PubMed
Kap M. et al.. The influence of tissue procurement procedures on RNA integrity, gene expression, and morphology in porcine and human liver tissue. Biopreservation and biobanking 13, 200–206 (2015). PubMed
Bao W. G. et al.. Biobanking of fresh-frozen human colon tissues: impact of tissue ex-vivo ischemia times and storage periods on RNA quality. Annals of surgical oncology 20, 1737–1744 (2013). PubMed
Kap M., Oomen M., Arshad S., de Jong B. & Riegman P. Fit for purpose frozen tissue collections by RNA integrity number-based quality control assurance at the Erasmus MC tissue bank. Biopreservation and biobanking 12, 81–90 (2014). PubMed
Ma Y., Dai H., Kong X. & Wang L. Impact of thawing on reference gene expression stability in renal cell carcinoma samples. Diagnostic molecular pathology 21, 157–163 (2012). PubMed
Viertler C. et al.. A new technology for stabilization of biomolecules in tissues for combined histological and molecular analyses. The Journal of molecular diagnostics 14, 458–466 (2012). PubMed
Groelz D. et al.. Non-formalin fixative versus formalin-fixed tissue: a comparison of histology and RNA quality. Experimental and molecular pathology 94, 188–194 (2013). PubMed
Fleige S. & Pfaffl M. W. RNA integrity and the effect on the real-time qRT-PCR performance. Molecular aspects of medicine 27, 126–139 (2006). PubMed
Björkman J., Švec D., Lott E., Kubista M. & Sjöback R. Differential amplicons (ΔAmp)—a new molecular method to assess RNA integrity. Biomolecular Detection and Quantification 6, 4–12 (2016). PubMed PMC
Slyskova J. et al.. Functional, Genetic, and Epigenetic Aspects of Base and Nucleotide Excision Repair in Colorectal Carcinomas. Clin Cancer Res. 18, 5878–5887 (2012). PubMed
Mandel M. & Betensky R. A. Simultaneous Confidence Intervals Based on the Percentile Bootstrap Approach. Computational statistics & data analysis 52, 2158–2165 (2008). PubMed PMC
McLachlan G. J. Mahalanobis distance. Resonance 4, 20–26 (1999).
Schroeder A. et al.. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC molecular biology 7, 3 (2006). PubMed PMC
Kubista M., Bjorkman J., Svec D. & Sjoback R. RNA quality matters. European Pharmaceutical Review 17, 63–67 (2012).
Denisov V., Strong W., Gingrich J. & Wintz H. Development and Validation of RQI: An RNA Quality Indicator for the Experion™ Automated Electrophoresis System. Electrophoresis tech note 5761. Available at: http://www.gene-quantification.com/Bio-Rad-bulletin-5761.pdf (Accessed: 19th January 2016) (2008).
Scouten C. W. Frozen Section Technique in the Animal Research Setting in A Practical Guide to Frozen Section Technique (ed Peters S. R.) 171–191 (Springer, 2010).
Die J. V. & Roman B. RNA quality assessment: a view from plant qPCR studies. Journal of experimental botany 63, 6069–6077 (2012). PubMed
Vermeulen J. et al.. Measurable impact of RNA quality on gene expression results from quantitative PCR. Nucleic acids research 39, e63 (2011). PubMed PMC
Korenkova V. et al.. Pre-amplification in the context of high-throughput qPCR gene expression experiment. BMC molecular biology 16, 5 (2015). PubMed PMC
Pizzamiglio S. et al.. Simultaneous confidence intervals to compare gene expression profiles using ABC transporter TaqMan microfluidic cards. Oncology reports 23, 853–860 (2010). PubMed
Gutierrez-Osuna R. L10: Linear discriminants analysis. Available at: http://research.cs.tamu.edu/prism/lectures/pr/pr_l10.pdf (Accessed: 19th January 2016) (2016).