Distant Metastasis in Colorectal Cancer Patients-Do We Have New Predicting Clinicopathological and Molecular Biomarkers? A Comprehensive Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, systematický přehled
Grantová podpora
NV19-09-00237
Ministerstvo Zdravotnictví Ceské Republiky
Q40/06
Progres
PubMed
32722130
PubMed Central
PMC7432613
DOI
10.3390/ijms21155255
PII: ijms21155255
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, colon cancer, liver metastasis, metastatic colorectal cancer, predictive markers,
- MeSH
- epigeneze genetická * MeSH
- kolorektální nádory * metabolismus patologie terapie MeSH
- lidé MeSH
- metastázy nádorů MeSH
- nádorové biomarkery biosyntéza MeSH
- regulace genové exprese u nádorů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
- Názvy látek
- nádorové biomarkery MeSH
Colorectal cancer (CRC) remains a serious health problem worldwide. Approximately half of patients will develop distant metastasis after CRC resection, usually with very poor prognosis afterwards. Because patient performance after distant metastasis surgery remains very heterogeneous, ranging from death within 2 years to a long-term cure, there is a clinical need for a precise risk stratification of patients to aid pre- and post-operative decisions. Furthermore, around 20% of identified CRC cases are at IV stage disease, known as a metastatic CRC (mCRC). In this review, we overview possible molecular and clinicopathological biomarkers that may provide prognostic and predictive information for patients with distant metastasis. These may comprise sidedness of the tumor, molecular profile and epigenetic characteristics of the primary tumor and arising metastatic CRC, and early markers reflecting cancer cell resistance in mCRC and biomarkers identified from transcriptome. This review discusses current stage in employment of these biomarkers in clinical practice as well as summarizes current experience in identifying predictive biomarkers in mCRC treatment.
Zobrazit více v PubMed
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. PubMed DOI
Siegel R.L., Miller K.D., Goding Sauer A., Fedewa S.A., Butterly L.F., Anderson J.C., Cercek A., Smith R.A., Jemal A. Colorectal cancer statistics, 2020. CA A Cancer J. Clin. 2020;70:145–164. doi: 10.3322/caac.21601. PubMed DOI
Oki E., Ando K., Nakanishi R., Sugiyama M., Nakashima Y., Kubo N., Kudou K., Saeki H., Nozoe T., Emi Y., et al. Recent advances in treatment for colorectal liver metastasis. Ann. Gastroenterol. Surg. 2018;2:167–175. doi: 10.1002/ags3.12071. PubMed DOI PMC
Kim H.J., Choi G. Clinical Implications of Lymph Node Metastasis in Colorectal Cancer: Current Status and Future Perspectives. Ann. Coloproctol. 2019;35:109–117. doi: 10.3393/ac.2019.06.12. PubMed DOI PMC
Fessler E., Dijkgraaf F.E., De Sousa E., Melo F., Medema J.P. Cancer stem cell dynamics in tumor progression and metastasis: Is the microenvironment to blame? Cancer Lett. 2013;341:97–104. doi: 10.1016/j.canlet.2012.10.015. PubMed DOI
Zarour L.R., Anand S., Billingsley K.G., Bisson W.H., Cercek A., Clarke M.F., Coussens L.M., Gast C.E., Geltzeiler C.B., Hansen L., et al. Colorectal Cancer Liver Metastasis: Evolving Paradigms and Future Directions. Cell Mol. Gastroenterol. Hepatol. 2017;3:163–173. doi: 10.1016/j.jcmgh.2017.01.006. PubMed DOI PMC
Bozzetti F., Doci R., Bignami P., Morabito A., Gennari L. Patterns of Failure Following Surgical Resection of Colorectal Cancer Liver Metastases: Rationale for a Multimodal Approach. Ann. Surg. 1987;205:264–270. doi: 10.1097/00000658-198703000-00008. PubMed DOI PMC
Misiakos E.P., Karidis N.P., Kouraklis G. Current treatment for colorectal liver metastases. World J. Gastroenterol. 2011;17:4067–4075. doi: 10.3748/wjg.v17.i36.4067. PubMed DOI PMC
Jones R.P., Jackson R., Dunne D.F.J., Malik H.Z., Fenwick S.W., Poston G.J., Ghaneh P. Systematic review and meta-analysis of follow-up after hepatectomy for colorectal liver metastases. Br. J. Surg. 2012;99:477–486. doi: 10.1002/bjs.8667. PubMed DOI
Yamazaki K., Nagase M., Tamagawa H., Ueda S., Tamura T., Murata K., Eguchi Nakajima T., Baba E., Tsuda M., Moriwaki T., et al. Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G) Ann. Oncol. 2016;27:1539–1546. doi: 10.1093/annonc/mdw206. PubMed DOI
Pastorino U., Buyse M., Friedel G., Ginsberg R.J., Girard P., Goldstraw P., Johnston M., McCormack P., Pass H., Putnam J.B. Long-term results of lung metastasectomy: Prognostic analyses based on 5206 cases. J. Thorac. Cardiovasc. Surg. 1997;113:37–49. doi: 10.1016/S0022-5223(97)70397-0. PubMed DOI
Abdalla E.K., Hicks M.E., Vauthey J.N. Portal vein embolization: Rationale, technique and future prospects. Br. J. Surg. 2001;88:165–175. doi: 10.1046/j.1365-2168.2001.01658.x. PubMed DOI
Okita A., Takahashi S., Ouchi K., Inoue M., Watanabe M., Endo M., Honda H., Yamada Y., Ishioka C. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget. 2018;9:18698–18711. doi: 10.18632/oncotarget.24617. PubMed DOI PMC
Ciombor K.K., Bekaii-Saab T. Emerging treatments in recurrent and metastatic colorectal cancer. J. Natl. Compr. Cancer Netw. 2013;11(Suppl. S4):S18–S27. doi: 10.6004/jnccn.2013.0217. PubMed DOI PMC
Van Cutsem E., Cervantes A., Adam R., Sobrero A., Van Krieken J.H., Aderka D., Aranda Aguilar E., Bardelli A., Benson A., Bodoky G., et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016;27:1386–1422. doi: 10.1093/annonc/mdw235. PubMed DOI
Turan N., Benekli M., Koca D., Ustaalioglu B.O., Dane F., Ozdemir N., Ulas A., Oztop I., Gumus M., Ozturk M.A., et al. Adjuvant systemic chemotherapy with or without bevacizumab in patients with resected liver metastases from colorectal cancer. Oncology. 2013;84:14–21. doi: 10.1159/000342429. PubMed DOI
Nappi A., Berretta M., Romano C., Tafuto S., Cassata A., Casaretti R., Silvestro L., Divitiis C.D., Alessandrini L., Fiorica F., et al. Metastatic Colorectal Cancer: Role of Target Therapies and Future Perspectives. Curr. Cancer Drug Targets. 2018;18:421–429. doi: 10.2174/1568009617666170209095143. PubMed DOI
Tsilimigras D.I., Ntanasis-Stathopoulos I., Bagante F., Moris D., Cloyd J., Spartalis E., Pawlik T.M. Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: A systematic review of the current evidence. Surg. Oncol. 2018;27:280–288. doi: 10.1016/j.suronc.2018.05.012. PubMed DOI
Fong Y., Fortner J., Sun R.L., Brennan M.F., Blumgart L.H. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: Analysis of 1001 consecutive cases. Ann. Surg. 1999;230:309–318, discussion 318–321. doi: 10.1097/00000658-199909000-00004. PubMed DOI PMC
Iwatsuki S., Dvorchik I., Madariaga J.R., Marsh J.W., Dodson F., Bonham A.C., Geller D.A., Gayowski T.J., Fung J.J., Starzl T.E. Hepatic resection for metastatic colorectal adenocarcinoma: A proposal of a prognostic scoring system. J. Am. Coll. Surg. 1999;189:291–299. doi: 10.1016/S1072-7515(99)00089-7. PubMed DOI PMC
Rees M., Tekkis P.P., Welsh F.K.S., O’Rourke T., John T.G. Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer: A multifactorial model of 929 patients. Ann. Surg. 2008;247:125–135. doi: 10.1097/SLA.0b013e31815aa2c2. PubMed DOI
Zakaria S., Donohue J.H., Que F.G., Farnell M.B., Schleck C.D., Ilstrup D.M., Nagorney D.M. Hepatic resection for colorectal metastases: Value for risk scoring systems? Ann. Surg. 2007;246:183–191. doi: 10.1097/SLA.0b013e3180603039. PubMed DOI PMC
Nathan H., de Jong M.C., Pulitano C., Ribero D., Strub J., Mentha G., Gigot J.-F., Schulick R.D., Choti M.A., Aldrighetti L., et al. Conditional Survival after Surgical Resection of Colorectal Liver Metastasis: An International Multi-Institutional Analysis of 949 Patients. J. Am. Coll. Surg. 2010;210:755–764. doi: 10.1016/j.jamcollsurg.2009.12.041. PubMed DOI
Roberts K.J., White A., Cockbain A., Hodson J., Hidalgo E., Toogood G.J., Lodge J.P.A. Performance of prognostic scores in predicting long-term outcome following resection of colorectal liver metastases. Br. J. Surg. 2014;101:856–866. doi: 10.1002/bjs.9471. PubMed DOI
Kattan M.W., Gönen M., Jarnagin W.R., DeMatteo R., D’Angelica M., Weiser M., Blumgart L.H., Fong Y. A nomogram for predicting disease-specific survival after hepatic resection for metastatic colorectal cancer. Ann. Surg. 2008;247:282–287. doi: 10.1097/SLA.0b013e31815ed67b. PubMed DOI
Balachandran V.P., Arora A., Gönen M., Ito H., Turcotte S., Shia J., Viale A., Snoeren N., van Hooff S.R., Rinkes I.H.M.B., et al. A Validated Prognostic Multigene Expression Assay for Overall Survival in Resected Colorectal Cancer Liver Metastases. Clin. Cancer Res. 2016;22:2575–2582. doi: 10.1158/1078-0432.CCR-15-1071. PubMed DOI PMC
Barbon C., Margonis G.A., Andreatos N., Rezaee N., Sasaki K., Buettner S., Damaskos C., Pawlik T.M., He J., Wolfgang C.L., et al. Colorectal Liver Metastases: Does the Future of Precision Medicine Lie in Genetic Testing? J. Gastrointest. Surg. 2018;22:1286–1296. doi: 10.1007/s11605-018-3766-1. PubMed DOI
Tie J., Lipton L., Desai J., Gibbs P., Jorissen R.N., Christie M., Drummond K.J., Thomson B.N.J., Usatoff V., Evans P.M., et al. KRAS mutation is associated with lung metastasis in patients with curatively resected colorectal cancer. Clin. Cancer Res. 2011;17:1122–1130. doi: 10.1158/1078-0432.CCR-10-1720. PubMed DOI
Sideris M., Papagrigoriadis S. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res. 2014;34:2061–2068. PubMed
Sagaert X. Prognostic biomarkers in colorectal cancer: Where do we stand? Virchows Arch. 2014;464:379–391. doi: 10.1007/s00428-013-1532-z. PubMed DOI
Adam R. Developing strategies for liver metastases from colorectal cancer. Semin. Oncol. 2007;34:S7–S11. doi: 10.1053/j.seminoncol.2007.01.003. PubMed DOI
Molinari C., Marisi G., Passardi A., Matteucci L., De Maio G., Ulivi P. Heterogeneity in Colorectal Cancer: A Challenge for Personalized Medicine? Int. J. Mol. Sci. 2018;19:3733. doi: 10.3390/ijms19123733. PubMed DOI PMC
Blank A., Roberts D.E., Dawson H., Zlobec I., Lugli A. Tumor Heterogeneity in Primary Colorectal Cancer and Corresponding Metastases. Does the Apple Fall Far From the Tree? Front. Med. (Lausanne) 2018;5:234. doi: 10.3389/fmed.2018.00234. PubMed DOI PMC
Ulintz P.J., Greenson J.K., Wu R., Fearon E.R., Hardiman K.M. Lymph Node Metastases in Colon Cancer Are Polyclonal. Clin. Cancer Res. 2018;24:2214–2224. doi: 10.1158/1078-0432.CCR-17-1425. PubMed DOI PMC
Lee S.Y., Haq F., Kim D., Jun C., Jo H.-J., Ahn S.-M., Lee W.-S. Comparative genomic analysis of primary and synchronous metastatic colorectal cancers. PLoS ONE. 2014;9:e90459. doi: 10.1371/journal.pone.0090459. PubMed DOI PMC
Hunter K.W., Amin R., Deasy S., Ha N.-H., Wakefield L. Genetic insights into the morass of metastatic heterogeneity. Nat. Rev. Cancer. 2018;18:211–223. doi: 10.1038/nrc.2017.126. PubMed DOI PMC
Mogensen M.B., Rossing M., Østrup O., Larsen P.N., Heiberg Engel P.J., Jørgensen L.N., Hogdall E.V., Eriksen J., Ibsen P., Jess P., et al. Genomic alterations accompanying tumour evolution in colorectal cancer: Tracking the differences between primary tumours and synchronous liver metastases by whole-exome sequencing. BMC Cancer. 2018;18:752. doi: 10.1186/s12885-018-4639-4. PubMed DOI PMC
Carethers J.M., Jung B.H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology. 2015;149:1177–1190.e3. doi: 10.1053/j.gastro.2015.06.047. PubMed DOI PMC
Zellmer V.R., Zhang S. Evolving concepts of tumor heterogeneity. Cell Biosci. 2014;4:69. doi: 10.1186/2045-3701-4-69. PubMed DOI PMC
Nowell P. The clonal evolution of tumor cell populations. Science. 1976;194:23–28. doi: 10.1126/science.959840. PubMed DOI
Jamal-Hanjani M., Quezada S.A., Larkin J., Swanton C. Translational Implications of Tumor Heterogeneity. Clin. Cancer Res. 2015;21:1258–1266. doi: 10.1158/1078-0432.CCR-14-1429. PubMed DOI PMC
The Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. doi: 10.1038/nature11252. PubMed DOI PMC
Kim R., Schell M.J., Teer J.K., Greenawalt D.M., Yang M., Yeatman T.J. Co-Evolution of Somatic Variation in Primary and Metastatic Colorectal Cancer May Expand Biopsy Indications in the Molecular Era. PLoS ONE. 2015;10:e0126670. doi: 10.1371/journal.pone.0126670. PubMed DOI PMC
Brannon A.R., Vakiani E., Sylvester B.E., Scott S.N., McDermott G., Shah R.H., Kania K., Viale A., Oschwald D.M., Vacic V., et al. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol. 2014;15:454. doi: 10.1186/s13059-014-0454-7. PubMed DOI PMC
Vignot S., Lefebvre C., Frampton G.M., Meurice G., Yelensky R., Palmer G., Capron F., Lazar V., Hannoun L., Miller V.A., et al. Comparative analysis of primary tumour and matched metastases in colorectal cancer patients: Evaluation of concordance between genomic and transcriptional profiles. Eur. J. Cancer. 2015;51:791–799. doi: 10.1016/j.ejca.2015.02.012. PubMed DOI
Sleeman J.P., Cady B., Pantel K. The connectivity of lymphogenous and hematogenous tumor cell dissemination: Biological insights and clinical implications. Clin. Exp. Metastasis. 2012;29:737–746. doi: 10.1007/s10585-012-9489-x. PubMed DOI
Cady B. Lymph Node Metastases: Indicators, but Not Governors of Survival. Arch. Surg. 1984;119:1067. doi: 10.1001/archsurg.1984.01390210063014. PubMed DOI
Naxerova K., Reiter J.G., Brachtel E., Lennerz J.K., van de Wetering M., Rowan A., Cai T., Clevers H., Swanton C., Nowak M.A., et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science. 2017;357:55–60. doi: 10.1126/science.aai8515. PubMed DOI PMC
Koehler A., Bataille F., Schmid C., Ruemmele P., Waldeck A., Blaszyk H., Hartmann A., Hofstaedter F., Dietmaier W. Gene expression profiling of colorectal cancer and metastases divides tumours according to their clinicopathological stage. J. Pathol. 2004;204:65–74. doi: 10.1002/path.1606. PubMed DOI
Lee J.-R., Kwon C.H., Choi Y., Park H.J., Kim H.S., Jo H.-J., Oh N., Park D.Y. Transcriptome analysis of paired primary colorectal carcinoma and liver metastases reveals fusion transcripts and similar gene expression profiles in primary carcinoma and liver metastases. BMC Cancer. 2016;16:539. doi: 10.1186/s12885-016-2596-3. PubMed DOI PMC
Vermaat J.S., Nijman I.J., Koudijs M.J., Gerritse F.L., Scherer S.J., Mokry M., Roessingh W.M., Lansu N., de Bruijn E., van Hillegersberg R., et al. Primary Colorectal Cancers and Their Subsequent Hepatic Metastases Are Genetically Different: Implications for Selection of Patients for Targeted Treatment. Clin. Cancer Res. 2012;18:688–699. doi: 10.1158/1078-0432.CCR-11-1965. PubMed DOI
Cervena K., Vodicka P., Vymetalkova V. Diagnostic and prognostic impact of cell-free DNA in human cancers: Systematic review. Mutat. Res./Rev. Mutat. Res. 2019;781:100–129. doi: 10.1016/j.mrrev.2019.05.002. PubMed DOI
Vymetalkova V., Cervena K., Bartu L., Vodicka P. Circulating Cell-Free DNA and Colorectal Cancer: A Systematic Review. IJMS. 2018;19:3356. doi: 10.3390/ijms19113356. PubMed DOI PMC
Marcuello M., Vymetalkova V., Neves R.P.L., Duran-Sanchon S., Vedeld H.M., Tham E., van Dalum G., Flügen G., Garcia-Barberan V., Fijneman R.J., et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Asp. Med. 2019;69:107–122. doi: 10.1016/j.mam.2019.06.002. PubMed DOI
Tejpar S., Stintzing S., Ciardiello F., Tabernero J., Van Cutsem E., Beier F., Esser R., Lenz H.-J., Heinemann V. Prognostic and Predictive Relevance of Primary Tumor Location in Patients with RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials. JAMA Oncol. 2017;3:194. doi: 10.1001/jamaoncol.2016.3797. PubMed DOI PMC
Engstrand J., Nilsson H., Strömberg C., Jonas E., Freedman J. Colorectal cancer liver metastases-a population-based study on incidence, management and survival. BMC Cancer. 2018;18:78. doi: 10.1186/s12885-017-3925-x. PubMed DOI PMC
Shen H., Yang J., Huang Q., Jiang M.-J., Tan Y.-N., Fu J.-F., Zhu L.-Z., Fang X.-F., Yuan Y. Different treatment strategies and molecular features between right-sided and left-sided colon cancers. World J. Gastroenterol. 2015;21:6470–6478. doi: 10.3748/wjg.v21.i21.6470. PubMed DOI PMC
Vauthey J.-N., Zimmitti G., Kopetz S.E., Shindoh J., Chen S.S., Andreou A., Curley S.A., Aloia T.A., Maru D.M. RAS mutation status predicts survival and patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases. Ann. Surg. 2013;258:619–626, discussion 626–627.:619–626, discussion 626–627. doi: 10.1097/SLA.0b013e3182a5025a. PubMed DOI PMC
Brudvik K.W., Kopetz S.E., Li L., Conrad C., Aloia T.A., Vauthey J.-N. Meta-analysis of KRAS mutations and survival after resection of colorectal liver metastases: KRAS status and survival after resection of colorectal liver metastases. Br. J. Surg. 2015;102:1175–1183. doi: 10.1002/bjs.9870. PubMed DOI
Alison M.R., Islam S., Wright N.A. Stem cells in cancer: Instigators and propagators? J. Cell Sci. 2010;123:2357–2368. doi: 10.1242/jcs.054296. PubMed DOI
Ailles L.E., Weissman I.L. Cancer stem cells in solid tumors. Curr. Opin. Biotechnol. 2007;18:460–466. doi: 10.1016/j.copbio.2007.10.007. PubMed DOI
Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009;119:1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC
Thiery J.P. Epithelial–mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 2003;15:740–746. doi: 10.1016/j.ceb.2003.10.006. PubMed DOI
Mani S.A., Guo W., Liao M.-J., Eaton E.N., Ayyanan A., Zhou A.Y., Brooks M., Reinhard F., Zhang C.C., Shipitsin M., et al. The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell. 2008;133:704–715. doi: 10.1016/j.cell.2008.03.027. PubMed DOI PMC
Chaffer C.L., Brueckmann I., Scheel C., Kaestli A.J., Wiggins P.A., Rodrigues L.O., Brooks M., Reinhardt F., Su Y., Polyak K., et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. USA. 2011;108:7950–7955. doi: 10.1073/pnas.1102454108. PubMed DOI PMC
Pang R., Law W.L., Chu A.C.Y., Poon J.T., Lam C.S.C., Chow A.K.M., Ng L., Cheung L.W.H., Lan X.R., Lan H.Y., et al. A Subpopulation of CD26+ Cancer Stem Cells with Metastatic Capacity in Human Colorectal Cancer. Cell Stem Cell. 2010;6:603–615. doi: 10.1016/j.stem.2010.04.001. PubMed DOI
Mulholland D.J., Kobayashi N., Ruscetti M., Zhi A., Tran L.M., Huang J., Gleave M., Wu H. Pten Loss and RAS/MAPK Activation Cooperate to Promote EMT and Metastasis Initiated from Prostate Cancer Stem/Progenitor Cells. Cancer Res. 2012;72:1878–1889. doi: 10.1158/0008-5472.CAN-11-3132. PubMed DOI PMC
Fabregat I., Malfettone A., Soukupova J. New Insights into the Crossroads between EMT and Stemness in the Context of Cancer. JCM. 2016;5:37. doi: 10.3390/jcm5030037. PubMed DOI PMC
Tanabe S., Quader S., Cabral H., Ono R. Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front. Pharmacol. 2020;11:904. doi: 10.3389/fphar.2020.00904. PubMed DOI PMC
Mansoori M., Madjd Z., Janani L., Rasti A. Circulating cancer stem cell markers in breast carcinomas: A systematic review protocol. Syst. Rev. 2017;6:262. doi: 10.1186/s13643-017-0660-y. PubMed DOI PMC
Settleman J. Bet on drug resistance. Nature. 2016;529:289–290. doi: 10.1038/nature16863. PubMed DOI
Vodenkova S., Buchler T., Cervena K., Veskrnova V., Vodicka P., Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 2020;206:107447. doi: 10.1016/j.pharmthera.2019.107447. PubMed DOI
Ricci-Vitiani L., Lombardi D.G., Pilozzi E., Biffoni M., Todaro M., Peschle C., De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–115. doi: 10.1038/nature05384. PubMed DOI
Catalano V., Di Franco S., Iovino F., Dieli F., Stassi G., Todaro M. CD133 as a target for colon cancer. Expert Opin. Ther. Targets. 2012;16:259–267. doi: 10.1517/14728222.2012.667404. PubMed DOI
Dalerba P., Dylla S.J., Park I.-K., Liu R., Wang X., Cho R.W., Hoey T., Gurney A., Huang E.H., Simeone D.M., et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA. 2007;104:10158–10163. doi: 10.1073/pnas.0703478104. PubMed DOI PMC
Ying X., Wu J., Meng X., Zuo Y., Xia Q., Chen J., Feng Y., Liu R., Li L., Huang W. AC133 expression associated with poor prognosis in stage II colorectal cancer. Med. Oncol. 2013;30:356. doi: 10.1007/s12032-012-0356-z. PubMed DOI
Muraro M.G., Mele V., Däster S., Han J., Heberer M., Cesare Spagnoli G., Iezzi G. CD133+, CD166+CD44+, and CD24+CD44+ phenotypes fail to reliably identify cell populations with cancer stem cell functional features in established human colorectal cancer cell lines. Stem Cells Transl. Med. 2012;1:592–603. doi: 10.5966/sctm.2012-0003. PubMed DOI PMC
Rocco A., Liguori E., Pirozzi G., Tirino V., Compare D., Franco R., Tatangelo F., Palaia R., D’Armiento F.P., Pollastrone G., et al. CD133 and CD44 cell surface markers do not identify cancer stem cells in primary human gastric tumors. J. Cell. Physiol. 2012;227:2686–2693. doi: 10.1002/jcp.23013. PubMed DOI
Zhao Y., Peng J., Zhang E., Jiang N., Li J., Zhang Q., Zhang X., Niu Y. CD133 expression may be useful as a prognostic indicator in colorectal cancer, a tool for optimizing therapy and supportive evidence for the cancer stem cell hypothesis: A meta-analysis. Oncotarget. 2016;7:10023–10036. doi: 10.18632/oncotarget.7054. PubMed DOI PMC
Huang X., Sheng Y., Guan M. Co-expression of stem cell genes CD133 and CD44 in colorectal cancers with early liver metastasis. Surg. Oncol. 2012;21:103–107. doi: 10.1016/j.suronc.2011.06.001. PubMed DOI
Chen K., Pan F., Jiang H., Chen J., Pei L., Xie F., Liang H. Highly enriched CD133(+)CD44(+) stem-like cells with CD133(+)CD44(high) metastatic subset in HCT116 colon cancer cells. Clin. Exp. Metastasis. 2011;28:751–763. doi: 10.1007/s10585-011-9407-7. PubMed DOI
Dylla S.J., Beviglia L., Park I.-K., Chartier C., Raval J., Ngan L., Pickell K., Aguilar J., Lazetic S., Smith-Berdan S., et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE. 2008;3:e2428. doi: 10.1371/annotation/2aa6a20a-e63c-49b6-aeea-aae62435617f. PubMed DOI PMC
Park Y.Y., An C.H., Oh S.T., Chang E.D., Lee J. Expression of CD133 is associated with poor prognosis in stage II colorectal carcinoma. Medicine (Baltimore) 2019;98:e16709. doi: 10.1097/MD.0000000000016709. PubMed DOI PMC
Khelwatty S.A., Essapen S., Bagwan I., Green M., Seddon A.M., Modjtahedi H. Co-expression and prognostic significance of putative CSC markers CD44, CD133, wild-type EGFR and EGFRvIII in metastatic colorectal cancer. Oncotarget. 2019;10:1704–1715. doi: 10.18632/oncotarget.26722. PubMed DOI PMC
Abbasian M., Mousavi E., Arab-Bafrani Z., Sahebkar A. The most reliable surface marker for the identification of colorectal cancer stem-like cells: A systematic review and meta-analysis. J. Cell. Physiol. 2019;234:8192–8202. doi: 10.1002/jcp.27619. PubMed DOI
Akbari M., Shomali N., Faraji A., Shanehbandi D., Asadi M., Mokhtarzadeh A., Shabani A., Baradaran B. CD133: An emerging prognostic factor and therapeutic target in colorectal cancer. Cell Biol. Int. 2020;44:368–380. doi: 10.1002/cbin.11243. PubMed DOI
Jesinghaus M., Wolf T., Pfarr N., Muckenhuber A., Ahadova A., Warth A., Goeppert B., Sers C., Kloor M., Endris V., et al. Distinctive Spatiotemporal Stability of Somatic Mutations in Metastasized Microsatellite-stable Colorectal Cancer. Am. J. Surg. Pathol. 2015;39:1140–1147. doi: 10.1097/PAS.0000000000000423. PubMed DOI
Lang H., Baumgart J., Heinrich S., Tripke V., Passalaqua M., Maderer A., Galle P.R., Roth W., Kloth M., Moehler M. Extended Molecular Profiling Improves Stratification and Prediction of Survival After Resection of Colorectal Liver Metastases. Ann. Surg. 2019;270:799–805. doi: 10.1097/SLA.0000000000003527. PubMed DOI
Testa U., Pelosi E., Castelli G. Colorectal cancer: Genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med. Sci. 2018;6:31. doi: 10.3390/medsci6020031. PubMed DOI PMC
Jeantet M., Tougeron D., Tachon G., Cortes U., Archambaut C., Fromont G., Karayan-Tapon L. High Intra- and Inter-Tumoral Heterogeneity of RAS Mutations in Colorectal Cancer. Int. J. Mol. Sci. 2016;17:15. doi: 10.3390/ijms17122015. PubMed DOI PMC
Korenkova V., Slyskova J., Novosadova V., Pizzamiglio S., Langerova L., Bjorkman J., Vycital O., Liska V., Levy M., Veskrna K., et al. The focus on sample quality: Influence of colon tissue collection on reliability of qPCR data. Sci. Rep. 2016;6:29023. doi: 10.1038/srep29023. PubMed DOI PMC
Pagès F., Berger A., Camus M., Sanchez-Cabo F., Costes A., Molidor R., Mlecnik B., Kirilovsky A., Nilsson M., Damotte D., et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 2005;353:2654–2666. doi: 10.1056/NEJMoa051424. PubMed DOI
Kawakami H., Zaanan A., Sinicrope F.A. Microsatellite instability testing and its role in the management of colorectal cancer. Curr. Treat Options Oncol. 2015;16:30. doi: 10.1007/s11864-015-0348-2. PubMed DOI PMC
Evrard C., Tachon G., Randrian V., Karayan-Tapon L., Tougeron D. Microsatellite Instability: Diagnosis, Heterogeneity, Discordance, and Clinical Impact in Colorectal Cancer. Cancers. 2019;11:1567. doi: 10.3390/cancers11101567. PubMed DOI PMC
Le D.T., Uram J.N., Wang H., Bartlett B.R., Kemberling H., Eyring A.D., Skora A.D., Luber B.S., Azad N.S., Laheru D., et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015;372:2509–2520. doi: 10.1056/NEJMoa1500596. PubMed DOI PMC
Le D.T., Durham J.N., Smith K.N., Wang H., Bartlett B.R., Aulakh L.K., Lu S., Kemberling H., Wilt C., Luber B.S., et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–413. doi: 10.1126/science.aan6733. PubMed DOI PMC
Venderbosch S., Nagtegaal I.D., Maughan T.S., Smith C.G., Cheadle J.P., Fisher D., Kaplan R., Quirke P., Seymour M.T., Richman S.D., et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 2014;20:5322–5330. doi: 10.1158/1078-0432.CCR-14-0332. PubMed DOI PMC
Tougeron D., Sueur B., Zaanan A., de la Fouchardiére C., Sefrioui D., Lecomte T., Aparicio T., Des Guetz G., Artru P., Hautefeuille V., et al. Prognosis and chemosensitivity of deficient MMR phenotype in patients with metastatic colorectal cancer: An AGEO retrospective multicenter study. Int. J. Cancer. 2020;147:285–296. doi: 10.1002/ijc.32879. PubMed DOI
Overman M.J., Lonardi S., Wong K.Y.M., Lenz H.-J., Gelsomino F., Aglietta M., Morse M.A., Van Cutsem E., McDermott R., Hill A., et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J. Clin. Oncol. 2018;36:773–779. doi: 10.1200/JCO.2017.76.9901. PubMed DOI
Xie Y.-H., Chen Y.-X., Fang J.-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020;5:22. doi: 10.1038/s41392-020-0116-z. PubMed DOI PMC
Vaughn C.P., ZoBell S.D., Furtado L.V., Baker C.L., Samowitz W.S. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosom. Cancer. 2011;50:307–312. doi: 10.1002/gcc.20854. PubMed DOI
Lièvre A., Bachet J.-B., Boige V., Cayre A., Le Corre D., Buc E., Ychou M., Bouché O., Landi B., Louvet C., et al. KRAS Mutations As an Independent Prognostic Factor in Patients With Advanced Colorectal Cancer Treated With Cetuximab. JCO. 2008;26:374–379. doi: 10.1200/JCO.2007.12.5906. PubMed DOI
Karapetis C.S., Khambata-Ford S., Jonker D.J., O’Callaghan C.J., Tu D., Tebbutt N.C., Simes R.J., Chalchal H., Shapiro J.D., Robitaille S., et al. K-ras Mutations and Benefit from Cetuximab in Advanced Colorectal Cancer. N. Engl. J. Med. 2008;359:1757–1765. doi: 10.1056/NEJMoa0804385. PubMed DOI
Amado R.G., Wolf M., Peeters M., Van Cutsem E., Siena S., Freeman D.J., Juan T., Sikorski R., Suggs S., Radinsky R., et al. Wild-Type KRAS Is Required for Panitumumab Efficacy in Patients With Metastatic Colorectal Cancer. JCO. 2008;26:1626–1634. doi: 10.1200/JCO.2007.14.7116. PubMed DOI
Douillard J.-Y., Oliner K.S., Siena S., Tabernero J., Burkes R., Barugel M., Humblet Y., Bodoky G., Cunningham D., Jassem J., et al. Panitumumab–FOLFOX4 Treatment and RAS Mutations in Colorectal Cancer. N. Engl. J. Med. 2013;369:1023–1034. doi: 10.1056/NEJMoa1305275. PubMed DOI
Bokemeyer C., Kohne C.-H., Ciardiello F., Lenz H.-J., Heinemann V., Klinkhardt U., Beier F., Duecker K., Tejpar S. Treatment outcome according to tumor RAS mutation status in OPUS study patients with metastatic colorectal cancer (mCRC) randomized to FOLFOX4 with/without cetuximab. JCO. 2014;32:3505. doi: 10.1200/jco.2014.32.15_suppl.3505. DOI
Sorich M.J., Wiese M.D., Rowland A., Kichenadasse G., McKinnon R.A., Karapetis C.S. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: A meta-analysis of randomized, controlled trials. Ann. Oncol. 2015;26:13–21. doi: 10.1093/annonc/mdu378. PubMed DOI
Rowland A., Dias M.M., Wiese M.D., Kichenadasse G., McKinnon R.A., Karapetis C.S., Sorich M.J. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br. J. Cancer. 2015;112:1888–1894. doi: 10.1038/bjc.2015.173. PubMed DOI PMC
Kopetz S., Grothey A., Yaeger R., Van Cutsem E., Desai J., Yoshino T., Wasan H., Ciardiello F., Loupakis F., Hong Y.S., et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E–Mutated Colorectal Cancer. N. Engl. J. Med. 2019;381:1632–1643. doi: 10.1056/NEJMoa1908075. PubMed DOI
Latchman J., Guastella A., Tofthagen C. 5-Fluorouracil Toxicity and Dihydropyrimidine Dehydrogenase Enzyme: Implications for Practice. Clin. J. Oncol. Nurs. 2014;18:581–585. doi: 10.1188/14.CJON.581-585. PubMed DOI PMC
Zhang L., Xing X., Meng F., Wang Y., Zhong D. Oral fluoropyrimidine versus intravenous 5-fluorouracil for the treatment of advanced gastric and colorectal cancer: Meta-analysis: Oral fluoropyrimidines for gastrointestinal cancer. J. Gastroenterol. Hepatol. 2018;33:209–225. doi: 10.1111/jgh.13845. PubMed DOI
Cordier P.-Y., Nau A., Ciccolini J., Oliver M., Mercier C., Lacarelle B., Peytel E. 5-FU-induced neurotoxicity in cancer patients with profound DPD deficiency syndrome: A report of two cases. Cancer Chemother. Pharmacol. 2011;68:823–826. doi: 10.1007/s00280-011-1666-0. PubMed DOI
Braun M.S., Seymour M.T. Balancing the efficacy and toxicity of chemotherapy in colorectal cancer. Ther. Adv. Med. Oncol. 2011;3:43–52. doi: 10.1177/1758834010388342. PubMed DOI PMC
Grothey A. Clinical Management of Oxaliplatin-Associated Neurotoxicity. Clin. Colorectal Cancer. 2005;5:S38–S46. doi: 10.3816/CCC.2005.s.006. PubMed DOI
Boige V., Mendiboure J., Pignon J.-P., Loriot M.-A., Castaing M., Barrois M., Malka D., Trégouët D.-A., Bouché O., Le Corre D., et al. Pharmacogenetic Assessment of Toxicity and Outcome in Patients With Metastatic Colorectal Cancer Treated With LV5FU2, FOLFOX, and FOLFIRI: FFCD 2000-05. JCO. 2010;28:2556–2564. doi: 10.1200/JCO.2009.25.2106. PubMed DOI
Tournigand C., André T., Bonnetain F., Chibaudel B., Lledo G., Hickish T., Tabernero J., Boni C., Bachet J.-B., Teixeira L., et al. Adjuvant Therapy With Fluorouracil and Oxaliplatin in Stage II and Elderly Patients (between ages 70 and 75 years) With Colon Cancer: Subgroup Analyses of the Multicenter International Study of Oxaliplatin, Fluorouracil, and Leucovorin in the Adjuvant Treatment of Colon Cancer Trial. JCO. 2012;30:3353–3360. doi: 10.1200/JCO.2012.42.5645. PubMed DOI
Gustavsson B., Carlsson G., Machover D., Petrelli N., Roth A., Schmoll H.-J., Tveit K.-M., Gibson F. A Review of the Evolution of Systemic Chemotherapy in the Management of Colorectal Cancer. Clin. Colorectal Cancer. 2015;14:1–10. doi: 10.1016/j.clcc.2014.11.002. PubMed DOI
Bardelli A., Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J. Clin. Oncol. 2010;28:1254–1261. doi: 10.1200/JCO.2009.24.6116. PubMed DOI
Hammond W.A., Swaika A., Mody K. Pharmacologic resistance in colorectal cancer: A review. Ther. Adv. Med. Oncol. 2016;8:57–84. doi: 10.1177/1758834015614530. PubMed DOI PMC
Mashouri L., Yousefi H., Aref A.R., Ahadi A.M., Molaei F., Alahari S.K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer. 2019;18:75. doi: 10.1186/s12943-019-0991-5. PubMed DOI PMC
Kim H.-S., Do S.-I., Noh B.-J., Jeong Y.I., Park S.J., Kim Y.W. Expression of phosphorylated extracellular signal-regulated kinase at the invasive front of hepatic colorectal metastasis. Oncol. Lett. 2015;9:1261–1265. doi: 10.3892/ol.2015.2874. PubMed DOI PMC
Sottoriva A., Kang H., Ma Z., Graham T.A., Salomon M.P., Zhao J., Marjoram P., Siegmund K., Press M.F., Shibata D., et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 2015;47:209–216. doi: 10.1038/ng.3214. PubMed DOI PMC
Chakedis J., Squires M.H., Beal E.W., Hughes T., Lewis H., Paredes A., Al-Mansour M., Sun S., Cloyd J.M., Pawlik T.M. Update on current problems in colorectal liver metastasis. Curr. Probl. Surg. 2017;54:554–602. doi: 10.1067/j.cpsurg.2017.10.002. PubMed DOI
Huo T., Canepa R., Sura A., Modave F., Gong Y. Colorectal cancer stages transcriptome analysis. PLoS ONE. 2017;12:e0188697. doi: 10.1371/journal.pone.0188697. PubMed DOI PMC
Ma S., Ogino S., Parsana P., Nishihara R., Qian Z., Shen J., Mima K., Masugi Y., Cao Y., Nowak J.A., et al. Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis. Genome Biol. 2018;19:142. doi: 10.1186/s13059-018-1511-4. PubMed DOI PMC
Pira G., Uva P., Scanu A.M., Rocca P.C., Murgia L., Uleri E., Piu C., Porcu A., Carru C., Manca A., et al. Landscape of transcriptome variations uncovering known and novel driver events in colorectal carcinoma. Sci. Rep. 2020;10:432. doi: 10.1038/s41598-019-57311-z. PubMed DOI PMC
Fehlker M., Huska M.R., Jöns T., Andrade-Navarro M.A., Kemmner W. Concerted down-regulation of immune-system related genes predicts metastasis in colorectal carcinoma. BMC Cancer. 2014;14:64. doi: 10.1186/1471-2407-14-64. PubMed DOI PMC
Johnston P.G. Identification of clinically relevant molecular subtypes in colorectal cancer: The dawning of a new era. Oncologist. 2014;19:568–573. doi: 10.1634/theoncologist.2014-038. PubMed DOI PMC
Li Z., Chen Y., Ren W.U., Hu S., Tan Z., Wang Y., Chen Y., Zhang J., Wu J., Li T., et al. Transcriptome Alterations in Liver Metastases of Colorectal Cancer After Acquired Resistance to Cetuximab. Cancer Genom. Proteom. 2019;16:207–219. doi: 10.21873/cgp.20126. PubMed DOI PMC
Zhang Y., Song J., Zhao Z., Yang M., Chen M., Liu C., Ji J., Zhu D. Single-cell transcriptome analysis reveals tumor immune microenvironment heterogenicity and granulocytes enrichment in colorectal cancer liver metastases. Cancer Lett. 2020;470:84–94. doi: 10.1016/j.canlet.2019.10.016. PubMed DOI
Lin A.Y., Chua M.-S., Choi Y.-L., Yeh W., Kim Y.H., Azzi R., Adams G.A., Sainani K., van de Rijn M., So S.K., et al. Comparative profiling of primary colorectal carcinomas and liver metastases identifies LEF1 as a prognostic biomarker. PLoS ONE. 2011;6:e16636. doi: 10.1371/journal.pone.0016636. PubMed DOI PMC
Lopez G., Boggio F., Ferrero S., Fusco N., Del Gobbo A. Molecular and Immunohistochemical Markers with Prognostic and Predictive Significance in Liver Metastases from Colorectal Carcinoma. Int. J. Mol. Sci. 2018;19:14. doi: 10.3390/ijms19103014. PubMed DOI PMC
Paschos K.A., Majeed A.W., Bird N.C. Natural history of hepatic metastases from colorectal cancer--pathobiological pathways with clinical significance. World J. Gastroenterol. 2014;20:3719–3737. doi: 10.3748/wjg.v20.i14.3719. PubMed DOI PMC
Yang P.-S., Hsu H.-H., Hsu T.-C., Chen M.-J., Wang C.-D., Yu S.-L., Hsu Y.-C., Li K.-C. Genome-Wide Scan for Copy Number Alteration Association with Relapse-Free Survival in Colorectal Cancer with Liver Metastasis Patients. J. Clin. Med. 2018;7:446. doi: 10.3390/jcm7110446. PubMed DOI PMC
Koncina E., Haan S., Rauh S., Letellier E. Prognostic and Predictive Molecular Biomarkers for Colorectal Cancer: Updates and Challenges. Cancers. 2020;12:319. doi: 10.3390/cancers12020319. PubMed DOI PMC
Lee M.K.C., Loree J.M. Current and emerging biomarkers in metastatic colorectal cancer. Curr. Oncol. 2019;26:S7–S15. doi: 10.3747/co.26.5719. PubMed DOI PMC
Baran B., Mert Ozupek N., Yerli Tetik N., Acar E., Bekcioglu O., Baskin Y. Difference Between Left-Sided and Right-Sided Colorectal Cancer: A Focused Review of Literature. Gastroenterol. Res. 2018;11:264–273. doi: 10.14740/gr1062w. PubMed DOI PMC
Loupakis F., Yang D., Yau L., Feng S., Cremolini C., Zhang W., Maus M.K.H., Antoniotti C., Langer C., Scherer S.J., et al. Primary Tumor Location as a Prognostic Factor in Metastatic Colorectal Cancer. JNCI J. Natl. Cancer Inst. 2015;107 doi: 10.1093/jnci/dju427. PubMed DOI PMC
Petrelli F., Tomasello G., Borgonovo K., Ghidini M., Turati L., Dallera P., Passalacqua R., Sgroi G., Barni S. Prognostic Survival Associated With Left-Sided vs. Right-Sided Colon Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2017;3:211. doi: 10.1001/jamaoncol.2016.4227. PubMed DOI
Mas L., Bachet J.-B., Taly V., Bouché O., Taieb J., Cohen R., Meurisse A., Normand C., Gornet J.-M., Artru P., et al. BRAF Mutation Status in Circulating Tumor DNA from Patients with Metastatic Colorectal Cancer: Extended Mutation Analysis from the AGEO RASANC Study. Cancers. 2019;11:998. doi: 10.3390/cancers11070998. PubMed DOI PMC
Bergheim J., Semaan A., Gevensleben H., Groening S., Knoblich A., Dietrich J., Weber J., Kalff J.C., Bootz F., Kristiansen G., et al. Potential of quantitative SEPT9 and SHOX2 methylation in plasmatic circulating cell-free DNA as auxiliary staging parameter in colorectal cancer: A prospective observational cohort study. Br. J. Cancer. 2018;118:1217–1228. doi: 10.1038/s41416-018-0035-8. PubMed DOI PMC
Siravegna G., Marsoni S., Siena S., Bardelli A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017;14:531–548. doi: 10.1038/nrclinonc.2017.14. PubMed DOI
Frenel J.S., Carreira S., Goodall J., Roda D., Perez-Lopez R., Tunariu N., Riisnaes R., Miranda S., Figueiredo I., Nava-Rodrigues D., et al. Serial Next-Generation Sequencing of Circulating Cell-Free DNA Evaluating Tumor Clone Response To Molecularly Targeted Drug Administration. Clin. Cancer Res. 2015;21:4586–4596. doi: 10.1158/1078-0432.CCR-15-0584. PubMed DOI PMC
Couraud S., Vaca-Paniagua F., Villar S., Oliver J., Schuster T., Blanche H., Girard N., Tredaniel J., Guilleminault L., Gervais R., et al. Noninvasive Diagnosis of Actionable Mutations by Deep Sequencing of Circulating Free DNA in Lung Cancer from Never-Smokers: A Proof-of-Concept Study from BioCAST/IFCT-1002. Clin. Cancer Res. 2014;20:4613–4624. doi: 10.1158/1078-0432.CCR-13-3063. PubMed DOI
Rothé F., Laes J.-F., Lambrechts D., Smeets D., Vincent D., Maetens M., Fumagalli D., Michiels S., Drisis S., Moerman C., et al. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann. Oncol. 2014;25:1959–1965. doi: 10.1093/annonc/mdu288. PubMed DOI
Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094. PubMed DOI PMC
Demuth C., Spindler K.-L.G., Johansen J.S., Pallisgaard N., Nielsen D., Hogdall E., Vittrup B., Sorensen B.S. Measuring KRAS Mutations in Circulating Tumor DNA by Droplet Digital PCR and Next-Generation Sequencing. Transl. Oncol. 2018;11:1220–1224. doi: 10.1016/j.tranon.2018.07.013. PubMed DOI PMC
Newman A.M., Bratman S.V., To J., Wynne J.F., Eclov N.C.W., Modlin L.A., Liu C.L., Neal J.W., Wakelee H.A., Merritt R.E., et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 2014;20:548–554. doi: 10.1038/nm.3519. PubMed DOI PMC
Strickler J.H., Loree J.M., Ahronian L.G., Parikh A.R., Niedzwiecki D., Pereira A.A.L., McKinney M., Korn W.M., Atreya C.E., Banks K.C., et al. Genomic Landscape of Cell-Free DNA in Patients with Colorectal Cancer. Cancer Discov. 2018;8:164–173. doi: 10.1158/2159-8290.CD-17-1009. PubMed DOI PMC
Diaz Jr L.A., Williams R.T., Wu J., Kinde I., Hecht J.R., Berlin J., Allen B., Bozic I., Reiter J.G., Nowak M.A., et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–540. doi: 10.1038/nature11219. PubMed DOI PMC
Mohan S., Heitzer E., Ulz P., Lafer I., Lax S., Auer M., Pichler M., Gerger A., Eisner F., Hoefler G., et al. Changes in Colorectal Carcinoma Genomes under Anti-EGFR Therapy Identified by Whole-Genome Plasma DNA Sequencing. PLoS Genet. 2014;10:e1004271. doi: 10.1371/journal.pgen.1004271. PubMed DOI PMC
Montagut C., Argilés G., Ciardiello F., Poulsen T.T., Dienstmann R., Kragh M., Kopetz S., Lindsted T., Ding C., Vidal J., et al. Efficacy of Sym004 in Patients With Metastatic Colorectal Cancer With Acquired Resistance to Anti-EGFR Therapy and Molecularly Selected by Circulating Tumor DNA Analyses: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2018;4:e175245. doi: 10.1001/jamaoncol.2017.5245. PubMed DOI PMC
Ng S.B., Chua C., Ng M., Gan A., Poon P.S., Teo M., Fu C., Leow W.Q., Lim K.H., Chung A., et al. Individualised multiplexed circulating tumour DNA assays for monitoring of tumour presence in patients after colorectal cancer surgery. Sci. Rep. 2017;7:40737. doi: 10.1038/srep40737. PubMed DOI PMC
Kidess E., Heirich K., Wiggin M., Vysotskaia V., Visser B.C., Marziali A., Wiedenmann B., Norton J.A., Lee M., Jeffrey S.S., et al. Mutation profiling of tumor DNA from plasma and tumor tissue of colorectal cancer patients with a novel, high-sensitivity multiplexed mutation detection platform. Oncotarget. 2015;6:2549–2561. doi: 10.18632/oncotarget.3041. PubMed DOI PMC
Schrock A.B., Ouyang C., Sandhu J., Sokol E., Jin D., Ross J.S., Miller V.A., Lim D., Amanam I., Chao J., et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann. Oncol. 2019;30:1096–1103. doi: 10.1093/annonc/mdz134. PubMed DOI
Domingo E., Camps C., Kaisaki P.J., Parsons M.J., Mouradov D., Pentony M.M., Makino S., Palmieri M., Ward R.L., Hawkins N.J., et al. Mutation burden and other molecular markers of prognosis in colorectal cancer treated with curative intent: Results from the QUASAR 2 clinical trial and an Australian community-based series. Lancet Gastroenterol. Hepatol. 2018;3:635–643. doi: 10.1016/S2468-1253(18)30117-1. PubMed DOI PMC
Fenizia F., Esposito Abate R., Pasquale R., Roma C., Lambiase M., Chicchinelli N., Graziano P., Botti G., Tatangelo F., Scognamiglio G., et al. Tumour mutation burden and microsatellite instability in colorectal cancer. Ann. Oncol. 2019;30:v39. doi: 10.1093/annonc/mdz239.036. DOI
Sartore-Bianchi A., Ardini E., Bosotti R., Amatu A., Valtorta E., Somaschini A., Raddrizzani L., Palmeri L., Banfi P., Bonazzina E., et al. Sensitivity to Entrectinib Associated With a Novel LMNA-NTRK1 Gene Fusion in Metastatic Colorectal Cancer. JNCI J. Natl. Cancer Inst. 2016;108 doi: 10.1093/jnci/djv306. PubMed DOI PMC
Amatu A., Somaschini A., Cerea G., Bosotti R., Valtorta E., Buonandi P., Marrapese G., Veronese S., Luo D., Hornby Z., et al. Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer. Br. J. Cancer. 2015;113:1730–1734. doi: 10.1038/bjc.2015.401. PubMed DOI PMC
Cesi G., Philippidou D., Kozar I., Kim Y.J., Bernardin F., Van Niel G., Wienecke-Baldacchino A., Felten P., Letellier E., Dengler S., et al. A new ALK isoform transported by extracellular vesicles confers drug resistance to melanoma cells. Mol. Cancer. 2018;17:145. doi: 10.1186/s12943-018-0886-x. PubMed DOI PMC
Yonesaka K., Zejnullahu K., Okamoto I., Satoh T., Cappuzzo F., Souglakos J., Ercan D., Rogers A., Roncalli M., Takeda M., et al. Activation of ERBB2 Signaling Causes Resistance to the EGFR-Directed Therapeutic Antibody Cetuximab. Sci. Transl. Med. 2011;3:99ra86. doi: 10.1126/scitranslmed.3002442. PubMed DOI PMC
Martin V., Landi L., Molinari F., Fountzilas G., Geva R., Riva A., Saletti P., De Dosso S., Spitale A., Tejpar S., et al. HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patients. Br. J. Cancer. 2013;108:668–675. doi: 10.1038/bjc.2013.4. PubMed DOI PMC
Bertotti A., Migliardi G., Galimi F., Sassi F., Torti D., Isella C., Cora D., Di Nicolantonio F., Buscarino M., Petti C., et al. A Molecularly Annotated Platform of Patient-Derived Xenografts (“Xenopatients”) Identifies HER2 as an Effective Therapeutic Target in Cetuximab-Resistant Colorectal Cancer. Cancer Discov. 2011;1:508–523. doi: 10.1158/2159-8290.CD-11-0109. PubMed DOI
Raghav K., Loree J.M., Morris J.S., Overman M.J., Yu R., Meric-Bernstam F., Menter D., Korphaisarn K., Kee B., Muranyi A., et al. Validation of HER2 Amplification as a Predictive Biomarker for Anti–Epidermal Growth Factor Receptor Antibody Therapy in Metastatic Colorectal Cancer. JCO Precis. Oncol. 2019:1–13. doi: 10.1200/PO.18.00226. PubMed DOI
Guinney J., Dienstmann R., Wang X., de Reyniès A., Schlicker A., Soneson C., Marisa L., Roepman P., Nyamundanda G., Angelino P., et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015;21:1350–1356. doi: 10.1038/nm.3967. PubMed DOI PMC
Lenz H.-J., Ou F.-S., Venook A.P., Hochster H.S., Niedzwiecki D., Goldberg R.M., Mayer R.J., Bertagnolli M.M., Blanke C.D., Zemla T., et al. Impact of Consensus Molecular Subtype on Survival in Patients With Metastatic Colorectal Cancer: Results From CALGB/SWOG 80405 (Alliance) JCO. 2019;37:1876–1885. doi: 10.1200/JCO.18.02258. PubMed DOI PMC
Isella C., Brundu F., Bellomo S.E., Galimi F., Zanella E., Porporato R., Petti C., Fiori A., Orzan F., Senetta R., et al. Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer. Nat. Commun. 2017;8:15107. doi: 10.1038/ncomms15107. PubMed DOI PMC
Sveen A., Bruun J., Eide P.W., Eilertsen I.A., Ramirez L., Murumägi A., Arjama M., Danielsen S.A., Kryeziu K., Elez E., et al. Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies. Clin. Cancer Res. 2018;24:794–806. doi: 10.1158/1078-0432.CCR-17-1234. PubMed DOI
Berg K.C.G., Eide P.W., Eilertsen I.A., Johannessen B., Bruun J., Danielsen S.A., Bjørnslett M., Meza-Zepeda L.A., Eknæs M., Lind G.E., et al. Multi-omics of 34 colorectal cancer cell lines-a resource for biomedical studies. Mol. Cancer. 2017;16:116. doi: 10.1186/s12943-017-0691-y. PubMed DOI PMC
Galon J. Type, Density, and Location of Immune Cells Within Human Colorectal Tumors Predict Clinical Outcome. Science. 2006;313:1960–1964. doi: 10.1126/science.1129139. PubMed DOI
Becht E., de Reyniès A., Giraldo N.A., Pilati C., Buttard B., Lacroix L., Selves J., Sautès-Fridman C., Laurent-Puig P., Fridman W.H. Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. Clin. Cancer Res. 2016;22:4057–4066. doi: 10.1158/1078-0432.CCR-15-2879. PubMed DOI
Galon J., Pagès F., Marincola F.M., Angell H.K., Thurin M., Lugli A., Zlobec I., Berger A., Bifulco C., Botti G., et al. Cancer classification using the Immunoscore: A worldwide task force. J. Transl. Med. 2012;10:205. doi: 10.1186/1479-5876-10-205. PubMed DOI PMC
Pagès F., Mlecnik B., Marliot F., Bindea G., Ou F.-S., Bifulco C., Lugli A., Zlobec I., Rau T.T., Berger M.D., et al. International validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet. 2018;391:2128–2139. doi: 10.1016/S0140-6736(18)30789-X. PubMed DOI
Mlecnik B., Bindea G., Angell H.K., Maby P., Angelova M., Tougeron D., Church S.E., Lafontaine L., Fischer M., Fredriksen T., et al. Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity. 2016;44:698–711. doi: 10.1016/j.immuni.2016.02.025. PubMed DOI
Pietrantonio F., Di Nicolantonio F., Schrock A.B., Lee J., Tejpar S., Sartore-Bianchi A., Hechtman J.F., Christiansen J., Novara L., Tebbutt N., et al. ALK, ROS1, and NTRK Rearrangements in Metastatic Colorectal Cancer. J. Natl. Cancer Inst. 2017;109 doi: 10.1093/jnci/djx089. PubMed DOI
Kheder E.S., Hong D.S. Emerging Targeted Therapy for Tumors with NTRK Fusion Proteins. Clin. Cancer Res. 2018;24:5807–5814. doi: 10.1158/1078-0432.CCR-18-1156. PubMed DOI
Ardini E., Bosotti R., Borgia A.L., De Ponti C., Somaschini A., Cammarota R., Amboldi N., Raddrizzani L., Milani A., Magnaghi P., et al. The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition. Mol. Oncol. 2014;8:1495–1507. doi: 10.1016/j.molonc.2014.06.001. PubMed DOI PMC
Cremolini C., Pietrantonio F. How the Lab is Changing Our View of Colorectal Cancer. Tumori J. 2016;102:541–547. doi: 10.5301/tj.5000551. PubMed DOI
Ross J.S., Fakih M., Ali S.M., Elvin J.A., Schrock A.B., Suh J., Vergilio J.-A., Ramkissoon S., Severson E., Daniel S., et al. Targeting HER2 in colorectal cancer: The landscape of amplification and short variant mutations in ERBB2 and ERBB3: ERBB2 and ERBB3 in CRC. Cancer. 2018;124:1358–1373. doi: 10.1002/cncr.31125. PubMed DOI PMC
Angell H., Galon J. From the immune contexture to the Immunoscore: The role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol. 2013;25:261–267. doi: 10.1016/j.coi.2013.03.004. PubMed DOI
Berghoff A.S., Fuchs E., Ricken G., Mlecnik B., Bindea G., Spanberger T., Hackl M., Widhalm G., Dieckmann K., Prayer D., et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. OncoImmunology. 2016;5:e1057388. doi: 10.1080/2162402X.2015.1057388. PubMed DOI PMC
Galon J., Mlecnik B., Bindea G., Angell H.K., Berger A., Lagorce C., Lugli A., Zlobec I., Hartmann A., Bifulco C., et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours: Immunoscore classification of malignant tumours. J. Pathol. 2014;232:199–209. doi: 10.1002/path.4287. PubMed DOI PMC
Galon J., Pagès F., Marincola F.M., Thurin M., Trinchieri G., Fox B.A., Gajewski T.F., Ascierto P.A. The immune score as a new possible approach for the classification of cancer. J. Transl. Med. 2012;10:1. doi: 10.1186/1479-5876-10-1. PubMed DOI PMC
Mlecnik B., Bindea G., Angell H.K., Sasso M.S., Obenauf A.C., Fredriksen T., Lafontaine L., Bilocq A.M., Kirilovsky A., Tosolini M., et al. Functional Network Pipeline Reveals Genetic Determinants Associated with in Situ Lymphocyte Proliferation and Survival of Cancer Patients. Sci. Transl. Med. 2014;6:228ra37. doi: 10.1126/scitranslmed.3007240. PubMed DOI
Pagès F., Kirilovsky A., Mlecnik B., Asslaber M., Tosolini M., Bindea G., Lagorce C., Wind P., Marliot F., Bruneval P., et al. In Situ Cytotoxic and Memory T Cells Predict Outcome in Patients with Early-Stage Colorectal Cancer. JCO. 2009;27:5944–5951. doi: 10.1200/JCO.2008.19.6147. PubMed DOI
Manceau G., Imbeaud S., Thiebaut R., Liebaert F., Fontaine K., Rousseau F., Genin B., Corre D.L., Didelot A., Vincent M., et al. Hsa-miR-31-3p Expression Is Linked to Progression-free Survival in Patients with KRAS Wild-type Metastatic Colorectal Cancer Treated with Anti-EGFR Therapy. Clin. Cancer Res. 2014;20:3338–3347. doi: 10.1158/1078-0432.CCR-13-2750. PubMed DOI
Mosakhani N., Lahti L., Borze I., Karjalainen-Lindsberg M.-L., Sundström J., Ristamäki R., Österlund P., Knuutila S., Sarhadi V.K. MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF. Cancer Genet. 2012;205:545–551. doi: 10.1016/j.cancergen.2012.08.003. PubMed DOI
Mlcochova J., Faltejskova-Vychytilova P., Ferracin M., Zagatti B., Radova L., Svoboda M., Nemecek R., John S., Kiss I., Vyzula R., et al. MicroRNA expression profiling identifies miR-31-5p/3p as associated with time to progression in wild-type RAS metastatic colorectal cancer treated with cetuximab. Oncotarget. 2015;6:38695–38704. doi: 10.18632/oncotarget.5735. PubMed DOI PMC
Laurent-Puig P., Grisoni M.-L., Heinemann V., Liebaert F., Neureiter D., Jung A., Montestruc F., Gaston-Mathe Y., Thiébaut R., Stintzing S. Validation of miR-31-3p Expression to Predict Cetuximab Efficacy When Used as First-Line Treatment in RAS Wild-Type Metastatic Colorectal Cancer. Clin. Cancer Res. 2019;25:134–141. doi: 10.1158/1078-0432.CCR-18-1324. PubMed DOI
Pugh S., Thiébaut R., Bridgewater J., Grisoni M.-L., Moutasim K., Rousseau F., Thomas G.J., Griffiths G., Liebaert F., Primrose J., et al. Association between miR-31-3p expression and cetuximab efficacy in patients with KRAS wild-type metastatic colorectal cancer: A post-hoc analysis of the New EPOC trial. Oncotarget. 2017;8:93856–93866. doi: 10.18632/oncotarget.21291. PubMed DOI PMC
Van Rijnsoever M., Elsaleh H., Joseph D., McCaul K., Iacopetta B. CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clin. Cancer Res. 2003;9:2898–2903. PubMed
Ahn J.B., Chung W.B., Maeda O., Shin S.J., Kim H.S., Chung H.C., Kim N.K., Issa J.-P.J. DNA methylation predicts recurrence from resected stage III proximal colon cancer. Cancer. 2011;117:1847–1854. doi: 10.1002/cncr.25737. PubMed DOI PMC
Shiovitz S., Bertagnolli M.M., Renfro L.A., Nam E., Foster N.R., Dzieciatkowski S., Luo Y., Lao V.V., Monnat R.J., Emond M.J., et al. CpG Island Methylator Phenotype Is Associated With Response to Adjuvant Irinotecan-Based Therapy for Stage III Colon Cancer. Gastroenterology. 2014;147:637–645. doi: 10.1053/j.gastro.2014.05.009. PubMed DOI PMC
Cervena K., Siskova A., Buchler T., Vodicka P., Vymetalkova V. Methylation-Based Therapies for Colorectal Cancer. Cells. 2020;9:1540. doi: 10.3390/cells9061540. PubMed DOI PMC
Valastyan S., Weinberg R.A. Tumor metastasis: Molecular insights and evolving paradigms. Cell. 2011;147:275–292. doi: 10.1016/j.cell.2011.09.024. PubMed DOI PMC
Arnold D., Lueza B., Douillard J.-Y., Peeters M., Lenz H.-J., Venook A., Heinemann V., Van Cutsem E., Pignon J.-P., Tabernero J., et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann. Oncol. 2017;28:1713–1729. doi: 10.1093/annonc/mdx175. PubMed DOI PMC
Li X., Wang M., Liu G.-Y., Ma J.-L. Dual VEGF/EGFR inhibition versus single targeted agent treatment in patients with metastatic colorectal cancer: A meta-analysis of randomized trials. Int. J. Colorectal Dis. 2016;31:1655–1656. doi: 10.1007/s00384-016-2593-7. PubMed DOI
Fromme J.E., Schildhaus H.-U. [FGFR3 overexpression is a relevant alteration in colorectal cancer] Pathologe. 2018;39:189–192. doi: 10.1007/s00292-018-0504-0. PubMed DOI
Greally M., Kelly C.M., Cercek A. HER2: An emerging target in colorectal cancer. Curr. Probl. Cancer. 2018;42:560–571. doi: 10.1016/j.currproblcancer.2018.07.001. PubMed DOI
Guler I., Askan G., Klostergaard J., Sahin I.H. Precision medicine for metastatic colorectal cancer: An evolving era. Expert Rev. Gastroenterol. Hepatol. 2019;13:919–931. doi: 10.1080/17474124.2019.1663174. PubMed DOI
Svrcek M., Lascols O., Cohen R., Collura A., Jonchère V., Fléjou J.-F., Buhard O., Duval A. MSI/MMR-deficient tumor diagnosis: Which standard for screening and for diagnosis? Diagnostic modalities for the colon and other sites: Differences between tumors. Bull. Cancer. 2019;106:119–128. doi: 10.1016/j.bulcan.2018.12.008. PubMed DOI
Grasso C.S., Giannakis M., Wells D.K., Hamada T., Mu X.J., Quist M., Nowak J.A., Nishihara R., Qian Z.R., Inamura K., et al. Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discov. 2018;8:730–749. doi: 10.1158/2159-8290.CD-17-1327. PubMed DOI PMC
Singh A., Patel P., Patel V.K., Jain D.K., Veerasamy R., Sharma P.C., Rajak H. Histone Deacetylase Inhibitors for the Treatment of Colorectal Cancer: Recent Progress and Future Prospects. Curr. Cancer Drug Targets. 2017;17:456–466. doi: 10.2174/1568009617666170109150134. PubMed DOI
He Y., Ma X., Chen K., Liu F., Cai S., Han-Zhang H., Hou T., Xiang J., Peng J. Perioperative Circulating Tumor DNA in Colorectal Liver Metastases: Concordance with Metastatic Tissue and Predictive Value for Tumor Burden and Prognosis. Cancer Manag. Res. 2020;12:1621–1630. doi: 10.2147/CMAR.S240869. PubMed DOI PMC