Variability of salivary markers of oxidative stress and antioxidant status in young healthy individuals
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
25893691
PubMed Central
PMC6837530
DOI
10.1179/1351000215y.0000000009
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarkers of oxidative stress, Carbonyl stress, Sex difference,
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Salivary advanced glycation end-products (AGEs), advanced oxidation protein products (AOPP), total antioxidant capacity (TAC), and ferric reducing ability of saliva (FRAS) are increased in various diseases. Little data exist for these markers in the healthy population. The aim of this study was to assess the inter-individual and intra-individual variability of AGEs, AOPP, TAC, and FRAS in the saliva of young healthy individuals. METHODS: Unstimulated saliva samples were collected from 16 females and 18 males daily over a period of 30 days. Markers were measured using spectrophotometric and spectrofluorometric microplate-based methods. RESULTS: All salivary markers measured were significantly higher in men than in women (P < 0.05 for AGEs; P < 0.001 for AOPP, TAC, and FRAS). The inter-individual variability was approximately 60% for AGEs and AOPP and 30-40% for TAC and FRAS in both genders. The inter-individual variability of FRAS was higher in men vs. women (P < 0.01). Intra-individual variability ranged from 20% for TAC, to 30% for AGES and FRAS and 45% for AOPP. DISCUSSION: Intra-individual variability of salivary AGEs, AOPP, TAC, and FRAS indicates that their use is currently limited to large cohort studies. Identifying the underlying factors related to the high inter-individual and intra-individual variability is needed. Sex differences should be considered in future studies.
c Institute of Molecular Biomedicine Faculty of Medicine Comenius University Bratislava Slovakia
Center for Molecular Medicine Slovak Academy of Science Bratislava Slovakia
e Faculty of Medicine Institute of Physiology Comenius University Bratislava Slovakia
f Institute of Physiology Academy of Sciences of the Czech Republic Prague Czech Republic
g Institute of Pathophysiology Faculty of Medicine Comenius University Bratislava Slovakia
Zobrazit více v PubMed
Sies H. Oxidative stress II. Oxidants and antioxidants. London: Academic Press; 1991.
Lyu BN, Lyu MB, Ismailov BI, Ismailov SB. Four hypotheses on mitochondria's role in the development and regulation of oxidative stress in the normal state, cell pathology and reversion of tumor cells. Med Hypotheses 2007;69(1):186–94. doi: 10.1016/j.mehy.2006.10.055 PubMed DOI
Bargnoux AS, Morena M, Badiou S, Dupuy AM, Canaud B, Cristol JP. Carbonyl stress and oxidatively modified proteins in chronic renal failure [Article in French]. Ann Biol Clin (Paris) 2009;67:153–8. PubMed
Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997;272(33):20313–6. doi: 10.1074/jbc.272.33.20313 PubMed DOI
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39(1):44–84. doi: 10.1016/j.biocel.2006.07.001 PubMed DOI
Tóthová L, Celecová V, Celec P. Salivary markers of oxidative stress and their relation to periodontal and dental status in children. Dis Markers 2013;34(1):9–15. doi: 10.1155/2013/591765 PubMed DOI PMC
Celec P, Cervenka T, Hodosy J, Boor P, Vesela S, Halcak L, et al. . Thiobarbituric acid reacting substances in saliva and their relation to the gingival inflammation. TMJ 2004;54(1):81–5.
D'Aiuto F, Nibali L, Parkar M, Patel K, Suvan J, Donos N. Oxidative stress, systemic inflammation, and severe periodontitis. J Dent Res 2010;89(11):1241–6. doi: 10.1177/0022034510375830 PubMed DOI PMC
Wei D, Zhang XL, Wang YZ, Yang CX, Chen G. Lipid peroxidation levels, total oxidant status and superoxide dismutase in serum, saliva and gingival crevicular fluid in chronic periodontitis patients before and after periodontal therapy. Aust Dent J 2010;55(1):70–8. doi: 10.1111/j.1834-7819.2009.01123.x PubMed DOI
Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet-derived advanced glycation end products are major contributors to the body's AGE pool and induce inflammation in healthy subjects. Ann NY Acad Sci 2005;1043:461–6. doi: 10.1196/annals.1333.052 PubMed DOI
Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S, et al. . Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci USA 1997;94(25):13915–20. doi: 10.1073/pnas.94.25.13915 PubMed DOI PMC
Wolff SP, Jiang ZY, Hunt JV. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med 1991;10:339–52. doi: 10.1016/0891-5849(91)90040-A PubMed DOI
Miyata T, Kurokawa K, van Ypersele de Strihou C. Advanced glycation and lipoxidation end products: role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism. J Am Soc Nephrol 2000;11:1744–52. PubMed
Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. . Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996;49:1304–13. doi: 10.1038/ki.1996.186 PubMed DOI
Selmeci L. Advanced oxidation protein products (AOPP): novel uremic toxins, or components of the non-enzymatic antioxidant system of the plasma proteome? Free Radic Res 2011;45(10):1115–23. doi: 10.3109/10715762.2011.602074 PubMed DOI
Capeillère-Blandin C, Gausson V, Descamps-Latscha B, Witko-Sarsat V. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim Biophys Acta 2004;1689(2):91–102. doi: 10.1016/j.bbadis.2004.02.008 PubMed DOI
Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004;37:277–85. doi: 10.1016/j.clinbiochem.2003.11.015 PubMed DOI
Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 1996;15:70–6. doi: 10.1006/abio.1996.0292 PubMed DOI
Ergun S, Troşala SC, Warnakulasuriya S, Özel S, Önal AE, Ofluoğlu D, et al. . Evaluation of oxidative stress and antioxidant profile in patients with oral lichen planus. J Oral Pathol Med 2011;40(4):286–93. doi: 10.1111/j.1600-0714.2010.00955.x PubMed DOI
Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005;53(6):1841–56. doi: 10.1021/jf030723c PubMed DOI
Čolak E. New markers of oxidative damage to macromolecules (review article). JMB 2008;27:1–16.
Behuliak M, Pálffy R, Gardlík R, Hodosy J, Halčák L, Celec P. Variability of thiobarbituric acid reacting substances in saliva. Dis Markers 2009;26:49–53. doi: 10.1155/2009/175683 PubMed DOI PMC
Celecová V, Kamodyová N, Tóthová L, Kúdela M, Celec P. Salivary markers of oxidative stress are related to age and oral health in adult non-smokers. J Oral Pathol Med 2013;42(3):263–6. doi: 10.1111/jop.12008 PubMed DOI
Witko-Sarsat V, Friedlander M, Nguyen Khoa T, Capeillère-Blandin C, Nguyen AT, Canteloup S, et al. . Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 1998;161(5):2524–32. PubMed
Lyszczarz R, Stypułkowska J, Stepniewski M, Szot WM. [Evaluation of saliva antioxidant activity for determining the state of dentition and oral hygiene in a group of young athletes]. [Article in Polish]. Wiad Lek 2002;55(Suppl 1(Pt 2)):768–72. PubMed
Youssef H, Groussard C, Machefer G, Minella O, Couillard A, Knight J, et al. . Comparison of total antioxidant capacity of salivary, capillary and venous samplings: interest of the salivary total antioxidant capacity on triathletes during training season. J Sports Med Phys Fitness 2008;48(4):522–9. PubMed
Qing Z, Ling-Ling E, Dong-Sheng W, Hong-Chen L. Relationship of advanced oxidative protein products in human saliva and plasma: age- and gender-related changes and stability during storage. Free Radic Res 2012;46(10):1201–6. doi: 10.3109/10715762.2012.700113 PubMed DOI
Iannitti T, Rottigni V, Palmieri B. Role of free radicals and antioxidant defences in oral cavity-related pathologies. J Oral Pathol Med 2012;41(9):649–61. doi: 10.1111/j.1600-0714.2012.01143.x PubMed DOI
Battino M, Ferreiro MS, Gallardo I, Newman HN, Bullon P. The antioxidant capacity of saliva. J Clin Periodontol 2002;29(3):189–94. doi: 10.1034/j.1600-051X.2002.290301x.x PubMed DOI
Nagler RM, Klein I, Zarzhevsky N, Drigues N, Reznick AZ. Characterization of the differentiated antioxidant profile of human saliva. Free Radic Biol Med 2002;32(3):268–77. doi: 10.1016/S0891-5849(01)00806-1 PubMed DOI
Moore S, Calder KA, Miller NJ, Rice-Evans CA. Antioxidant activity of saliva and periodontal disease. Free Radic Res 1994;21(6):417–25. doi: 10.3109/10715769409056594 PubMed DOI
Block G, Dietrich M, Norkus E, Jensen C, Benowitz NL, Morrow JD, et al. . Intraindividual variability of plasma antioxidants, markers of oxidative stress, C-reactive protein, cotinine, and other biomarkers. Epidemiology 2006;17(4):404–12. doi: 10.1097/01.ede.0000220655.53323.e9 PubMed DOI
Kanabrocki EL, Murray D, Hermida RC, Scott GS, Bremner WF, Ryan MD, et al. . Circadian variation in oxidative stress markers in healthy and type II diabetic men. Chronobiol Int 2002;19(2):423–39. doi: 10.1081/CBI-120002914 PubMed DOI
Balog T, Sobocanec S, Sverko V, Krolo I, Rocić B, Marotti M, et al. . The influence of season on oxidant–antioxidant status in trained and sedentary subjects. Life Sci 2006;78(13):1441–7. doi: 10.1016/j.lfs.2005.07.039 PubMed DOI
Sculley DV, Langley-Evans SC. Periodontal disease is associated with lower antioxidant capacity in whole saliva and evidence of increased protein oxidation. Clin Sci (Lond) 2003;105(2):167–72. doi: 10.1042/CS20030031 PubMed DOI
Bloomer RJ, Fisher-Wellman KH. Lower postprandial oxidative stress in women compared with men. Gend Med 2010;7(4):340–9. doi: 10.1016/j.genm.2010.07.001 PubMed DOI
Bloomer RJ, Fisher-Wellman KH. Blood oxidative stress biomarkers: influence of sex, exercise training status, and dietary intake. Gend Med 2008;5(3):218–28. doi: 10.1016/j.genm.2008.07.002 PubMed DOI
Kamodyová N, Tóthová L, Celec P. Salivary markers of oxidative stress and antioxidant status: influence of external factors. Dis Markers 2013;34(5):313–21. doi: 10.1155/2013/341302 PubMed DOI PMC
Pepe H, Balci SS, Revan S, Akalin PP, Kurtoğlu F. Comparison of oxidative stress and antioxidant capacity before and after running exercises in both sexes. Gend Med 2009;6(4):587–95. doi: 10.1016/j.genm.2009.10.001 PubMed DOI
Inoue H, Ono K, Masuda W, Morimoto Y, Tanaka T, Yokota M, et al. . Gender difference in unstimulated whole saliva flow rate and salivary gland sizes. Arch Oral Biol 2006;51(12):1055–60. doi: 10.1016/j.archoralbio.2006.06.010 PubMed DOI
Oxidative stress in the oral cavity is driven by individual-specific bacterial communities