Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25903547
DOI
10.1007/s12223-015-0393-z
PII: 10.1007/s12223-015-0393-z
Knihovny.cz E-zdroje
- MeSH
- bakteriofágy klasifikace genetika izolace a purifikace MeSH
- fylogeneze * MeSH
- molekulární sekvence - údaje MeSH
- pavouci klasifikace virologie MeSH
- Wolbachia virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster.
Zobrazit více v PubMed
PLoS Negl Trop Dis. 2009 Sep 15;3(9):e516 PubMed
Mol Ecol. 2006 Aug;15(9):2451-61 PubMed
Proc Biol Sci. 1992 Nov 23;250(1328):91-8 PubMed
PLoS One. 2011;6(12):e28695 PubMed
Parasitol Res. 2014 Jan;113(1):399-404 PubMed
Biochem Biophys Res Commun. 2004 May 14;317(4):1183-8 PubMed
Proc Biol Sci. 2002 Mar 7;269(1490):437-45 PubMed
Mol Biol Evol. 2007 Feb;24(2):427-35 PubMed
Exp Appl Acarol. 2012 Nov;58(3):207-20 PubMed
Insect Mol Biol. 2004 Apr;13(2):147-53 PubMed
Curr Microbiol. 2004 Sep;49(3):208-14 PubMed
Nature. 1990 Aug 9;346(6284):558-60 PubMed
J Genet. 2011 Dec;90(3):507-10 PubMed
Curr Microbiol. 2011 Mar;62(3):816-20 PubMed
Mol Biol Evol. 2004 Oct;21(10):1981-91 PubMed
Folia Microbiol (Praha). 2008;53(6):547-50 PubMed
Trends Microbiol. 2010 Apr;18(4):173-81 PubMed
Insect Biochem Mol Biol. 2004 Jul;34(7):723-9 PubMed
J Bacteriol. 1998 May;180(9):2373-8 PubMed
J Mol Evol. 2000 Nov;51(5):491-7 PubMed