Effect of temperature and nutrients on the growth and development of seedlings of an invasive plant

. 2015 Apr 28 ; 7 () : . [epub] 20150428

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25926326

Plant species distributions are determined by the response of populations to regional climates; however, little is known about how alien plants that arrive in central Europe from climatically warmer regions cope with the temperature conditions at the early stage of population development. Ambrosia artemisiifolia (common ragweed) is an invasive annual plant causing considerable health and economic problems in Europe. Although climate-based models predict that the whole of the Czech Republic is climatically suitable for this species, it is confined to the warmest regions. To determine the factors possibly responsible for its restricted occurrence, we investigated the effects of temperature and nutrient availability on its seedlings. The plants were cultivated at one of seven temperature regimes ranging from 10 to 34 °C, combined with three nutrient levels. The data on the rate of leaf development were used to calculate the lower developmental threshold (LDT, the temperature, in °C, below which development ceases), the sum of effective temperatures (SET, the amount of heat needed to complete a developmental stage measured in degree days above LDT) and width of the thermal window. The rate of development decreased with decrease in temperature and nutrient supply. Besides this, the decrease in the availability of nutrients resulted in decreased LDT, increased SET and wider thermal window. The dependence of LDT and SET on the availability of nutrients contradicts the concept that thermal constants do not vary. Our results highlight temperature as the main determinant of common ragweed's distribution and identify nutrient availability as a factor that results in the realized niche being smaller than the fundamental niche; both of these need to be taken into account when predicting the future spread of A. artemisiifolia.

Erratum v

PubMed

Zobrazit více v PubMed

Baskin JM, Baskin CC. 1980. Ecophysiology of secondary dormancy in seeds of Ambrosia artemisiifolia. Ecology 61:475–480. 10.2307/1937410 DOI

Bazzaz FA. 1974. Ecophysiology of Ambrosia artemisiifolia: a successional dominant. Ecology 55:112–119. 10.2307/1934623 DOI

Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM. 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26:333–339. 10.1016/j.tree.2011.03.023 PubMed DOI

Brandes D, Nitzsche J. 2007. Biology, introduction, dispersal, and distribution of common ragweed (Ambrosia artemisiifolia L.) with special regard to Germany. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 58:286–291.

Chapman DS, Haynes T, Beal S, Essl F, Bullock JM. 2014. Phenology predicts the native and invasive range limits of common ragweed. Global Change Biology 20:192–202. 10.1111/gcb.12380 PubMed DOI

Charnov EL, Gillooly J. 2003. Thermal time: body size, food quality and the 10°C rule. Evolutionary Ecology Research 5:43–51.

Chauvel B, Dessaint F, Cardinal-Legrand C, Bretagnolle F. 2006. The historical spread of Ambrosia artemisiifolia L. in France from herbarium records. Journal of Biogeography 33:665–673. 10.1111/j.1365-2699.2005.01401.x DOI

Cunze S, Leiblein MC, Tackenberg O. 2013. Range expansion of Ambrosia artemisiifolia in Europe is promoted by climate change. ISRN Ecology 2013: Article 610126.

de Bona FD, Monteiro FA. 2010. The development and production of leaves and tillers by Marandu palisadegrass fertilised with nitrogen and sulphur. Tropical Grasslands 44:192–201.

Deen W, Hunt LA, Swanton CJ. 1998a. Photothermal time describes common ragweed (Ambrosia artemisiifolia L.) phenological development and growth. Weed Science 46:561–568.

Deen W, Hunt T, Swanton CJ. 1998b. Influence of temperature, photoperiod, and irradiance on the phenological development of common ragweed (Ambrosia artemisiifolia). Weed Science 46:555–560.

DiTommaso A. 2004. Germination behavior of common ragweed (Ambrosia artemisiifolia) populations across a range of salinities. Weed Science 52:1002–1009. 10.1614/WS-04-030R1 DOI

Dixon AFG, Honěk A, Jarošík V. 2013. Physiological mechanism governing slow and fast development in predatory ladybirds. Physiological Entomology 38:26–32. 10.1111/j.1365-3032.2012.00855.x DOI

Dullinger S, Kleinbauer I, Peterseil J, Smolik M, Essl F. 2009. Niche based distribution modelling of an invasive alien plant: effects of population status, propagule pressure and invasion history. Biological Invasions 11:2401–2414. 10.1007/s10530-009-9424-5 DOI

Essl F, Dullinger S, Kleinbauer I. 2009. Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81:119–133.

Fumanal B, Chauvel B, Bretagnolle F. 2007. Estimation of pollen and seed production of common ragweed in France. Annals of Agricultural and Environmental Medicine 14:233–236. PubMed

Fumanal B, Gaudot I, Bretagnolle F. 2008. Seed-bank dynamics in the invasive plant, Ambrosia artemisiifolia L. Seed Science Research 18:101–114. 10.1017/S0960258508974316 DOI

Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH. 2002. Effects of size and temperature on developmental time. Nature 417:70–73. 10.1038/417070a PubMed DOI

Gramig GG, Stoltenberg DE. 2007. Leaf appearance base temperature and phyllochron for common grass and broadleaf weed species. Weed Technology 21:249–254. 10.1614/WT-06-039.1 DOI

Granier C, Massonnet C, Turc O, Muller B, Chenu K, Tardieu F. 2002. Individual leaf development in Arabidopsis thaliana: a stable thermal-time-based programme. Annals of Botany 89:595–604. 10.1093/aob/mcf085 PubMed DOI PMC

Grotkopp E, Rejmánek M. 2007. High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. American Journal of Botany 94:526–532. 10.3732/ajb.94.4.526 PubMed DOI

Hodek I, van Emden HF, Honĕk A, eds. 2012. Ecology and behaviour of the ladybird beetles (Coccinellidae). Chichester: Wiley-Blackwell.

Jarošík V, Honěk A, Dixon AFG. 2002. Developmental rate isomorphy in insects and mites. The American Naturalist 160:497–510. 10.1086/342077 PubMed DOI

Jarošík V, Kratochvíl L, Honěk A, Dixon AFG. 2004. A general rule for the dependence of developmental rate on temperature in ectothermic animals. Proceedings of the Royal Society of London B: Biological Sciences 271:S219–S221. 10.1098/rsbl.2003.0145 PubMed DOI PMC

Jarošík V, Kumar G, Omkar, Dixon AFG. 2014. Are thermal constants constant? A test using two species of ladybird. Journal of Thermal Biology 40:1–8. 10.1016/j.jtherbio.2013.12.001 PubMed DOI

Jehlík V. 1998. Cizí expanzivní plevele České republiky a Slovenské republiky [Alien expansive weeds of the Czech Republic and Slovak Republic]. Praha: Academia.

Kartesz JT, Meacham CA. 1999. Synthesis of the North American flora . Version 1.0 Chapel Hill: North Carolina Botanical Garden.

Kömives T, Béres I, Reisinger P, Lehoczky E, Berke J, Tamás J, Páldy A, Csornai G, Nándor G, Kardeván P, Mikulás J, Gólya G, Molnar J. 2006. New strategy of the integrated protection against common ragweed (Ambrosia artemisiifolia L). Hungarian Weed Research and Technology 6:5–50.

Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarošík V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kuehn I, Marchante H, Perglova I, Pino J, Vila M, Zikos A, Roy D, Hulme PE. 2008. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149.

Leiblein-Wild MC, Kaviani R, Tackenberg O. 2014. Germination and seedling frost tolerance differ between the native and invasive range in common ragweed. Oecologia 174:739–750. 10.1007/s00442-013-2813-6 PubMed DOI PMC

Leskovšek R, Eler K, Batič F, Simončic A. 2012a. The influence of nitrogen, water and competition on the vegetative and reproductive growth of common ragweed (Ambrosia artemisiifolia L.). Plant Ecology 213:769–781. 10.1007/s11258-012-0040-6 DOI

Leskovšek R, Datta A, Simončic A, Knezevic SZ. 2012b. Influence of nitrogen and plant density on the growth and seed production of common ragweed (Ambrosia artemisiifolia L.). Journal of Pest Science 85:527–539. 10.1007/s10340-012-0433-2 DOI

Martin MD, Zimmer EA, Olsen MT, Foote AD, Gilbert MTP, Brush GS. 2014. Herbarium specimens reveal a historical shift in phylogeographic structure of common ragweed during native range disturbance. Molecular Ecology 23:1701–1716. 10.1111/mec.12675 PubMed DOI

Moravcová L, Pyšek P, Jarošík V, Havlíčková V, Zákravský P. 2010. Reproductive characteristics of neophytes in the Czech Republic: traits of invasive and non-invasive species. Preslia 82:365–390.

Morrison JA, Mauck K. 2007. Experimental field comparison of native and non-native maple seedlings: natural enemies, ecophysiology, growth and survival. Journal of Ecology 95:1036–1049. 10.1111/j.1365-2745.2007.01270.x DOI

Pinke G, Karácsony P, Czúcz B, Botta-Dukát Z. 2011. Environmental and land-use variables determining the abundance of Ambrosia artemisiifolia in arable fields in Hungary. Preslia 83:219–235.

Pinke G, Karácsony P, Botta-Dukát Z, Czúcz B. 2013. Relating Ambrosia artemisiifolia and other weeds to the management of Hungarian sunflower crops. Journal of Pest Science 86:621–631. 10.1007/s10340-013-0484-z DOI

Pyšek P, Chytrý M, Pergl J, Sádlo J, Wild J. 2012a. Plant invasions in the Czech Republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia 84:575–630.

Pyšek P, Danihelka J, Sádlo J, Chrtek J, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L. 2012b. Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255.

Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity & Distributions 6:93–107. 10.1046/j.1472-4642.2000.00083.x DOI

Richter R, Dullinger S, Essl F, Leitner M, Vogl G. 2013a. How to account for habitat suitability in weed management programmes? Biological Invasions 15:657–669. 10.1007/s10530-012-0316-8 DOI

Richter R, Berger UE, Dullinger S, Essl F, Leitner M, Smith M, Vogl G. 2013b. Spread of invasive ragweed: climate change, management and how to reduce allergy costs. Journal of Applied Ecology 50:1422–1430. 10.1111/1365-2664.12156 DOI

Rybníček K, Jäger S. 2001. Ambrosia (Ragweed) in Europe. ACI International 13:60–66.

Šikoparija B, Smith M, Skjøth CA, Radišić P, Milkovska S, Šimić S, Brandt J. 2009. The Pannonian plain as a source of Ambrosia pollen in the Balkans. International Journal of Biometeorology 53:263–272. 10.1007/s00484-009-0212-9 PubMed DOI

Skálová H, Havlíčková V, Pyšek P. 2012. Seedling traits, plasticity and local differentiation as strategies of invasive species of Impatiens in central Europe. Annals of Botany 110:1429–1438. 10.1093/aob/mcr316 PubMed DOI PMC

Storkey J, Stratonovitch P, Chapman DS, Vidotto F, Semenov MA. 2014. A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS ONE 9:e88156 10.1371/journal.pone.0088156 PubMed DOI PMC

Stratonovitch P, Storkey J, Semenov MA. 2012. A process-based approach to modelling impacts of climate change on the damage niche of an agricultural weed. Global Change Biology 18:2071–2080. 10.1111/j.1365-2486.2012.02650.x DOI

Zheng YL, Feng Y-L, Liu WX, Liao ZY. 2009. Growth, biomass allocation, morphology, and photosynthesis of invasive Eupatorium adenophorum and its native congeners grown at four irradiances. Plant Ecology 203:263–271. 10.1007/s11258-008-9544-5 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace