DLX4 is associated with orofacial clefting and abnormal jaw development

. 2015 Aug 01 ; 24 (15) : 4340-52. [epub] 20150507

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid25954033

Grantová podpora
EY019999-01 NEI NIH HHS - United States
1R21 EY022779-01 NEI NIH HHS - United States
R01-DE021420 NIDCR NIH HHS - United States
R21 EY022779 NEI NIH HHS - United States
R21 EY019999 NEI NIH HHS - United States

Cleft lip and/or palate (CL/P) are common structural birth defects in humans. We used exome sequencing to study a patient with bilateral CL/P and identified a single nucleotide deletion in the patient and her similarly affected son—c.546_546delG, predicting p.Gln183Argfs*57 in the Distal-less 4 (DLX4) gene. The sequence variant was absent from databases, predicted to be deleterious and was verified by Sanger sequencing. In mammals, there are three Dlx homeobox clusters with closely located gene pairs (Dlx1/Dlx2, Dlx3/Dlx4, Dlx5/Dlx6). In situ hybridization showed that Dlx4 was expressed in the mesenchyme of the murine palatal shelves at E12.5, prior to palate closure. Wild-type human DLX4, but not mutant DLX4_c.546delG, could activate two murine Dlx conserved regulatory elements, implying that the mutation caused haploinsufficiency. We showed that reduced DLX4 expression after short interfering RNA treatment in a human cell line resulted in significant up-regulation of DLX3, DLX5 and DLX6, with reduced expression of DLX2 and significant up-regulation of BMP4, although the increased BMP4 expression was demonstrated only in HeLa cells. We used antisense morpholino oligonucleotides to target the orthologous Danio rerio gene, dlx4b, and found reduced cranial size and abnormal cartilaginous elements. We sequenced DLX4 in 155 patients with non-syndromic CL/P and CP, but observed no sequence variants. From the published literature, Dlx1/Dlx2 double homozygous null mice and Dlx5 homozygous null mice both have clefts of the secondary palate. This first finding of a DLX4 mutation in a family with CL/P establishes DLX4 as a potential cause of human clefts.

Cardiovascular Research Institute University of California San Francisco San Francisco USA and

Cardiovascular Research Institute University of California San Francisco San Francisco USA and Institute for Human Genetics University of California San Francisco San Francisco CA USA

Department of Medical Genetics University of Campinas São Paulo Brazil

Department of Pediatrics University of California San Francisco San Francisco CA 94143 USA

Department of Pediatrics University of California San Francisco San Francisco CA 94143 USA Division of Craniofacial Anomalies Department of Orofacial Sciences University of California San Francisco San Francisco CA USA Institute for Human Genetics University of California San Francisco San Francisco CA USA Program in Craniofacial Biology University of California San Francisco San Francisco CA 94114 USA

Department of Pediatrics University of California San Francisco San Francisco CA 94143 USA Institute for Human Genetics University of California San Francisco San Francisco CA USA

Division of Craniofacial Anomalies Department of Orofacial Sciences University of California San Francisco San Francisco CA USA

Division of Craniofacial Anomalies Department of Orofacial Sciences University of California San Francisco San Francisco CA USA Laboratory of Transgenic Models of Diseases Institute of Molecular Genetics of the ASCR v v i Prague Czech Republic Program in Craniofacial Biology University of California San Francisco San Francisco CA 94114 USA

Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University China

Zobrazit více v PubMed

Pavri S., Forrest C.R. (2013) Demographics of orofacial clefts in Canada from 2002 to 2008. Cleft Palate Craniofac. J., 50, 224–230. PubMed

IPDTOC Working Group. (2011) Prevalence at birth of cleft lip with or without cleft palate: data from the International Perinatal Database of Typical Oral Clefts (IPDTOC). Cleft Palate Craniofac. J., 48, 66–81. PubMed

Clifton-Bligh R.J., Wentworth J.M., Heinz P., Crisp M.S., John R., Lazarus J.H., Ludgate M., Chatterjee V.K. (1998) Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat. Genet., 19, 399–401. PubMed

Zucchero T.M., Cooper M.E., Maher B.S., Daack-Hirsch S., Nepomuceno B., Ribeiro L., Caprau D., Christensen K., Suzuki Y., Machida J., et al. (2004) Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate. N. Engl. J. Med., 351, 769–780. PubMed

Modesto A., Moreno L.M., Krahn K., King S., Lidral A.C. (2006) MSX1 and orofacial clefting with and without tooth agenesis. J. Dent. Res., 85, 542–546. PubMed PMC

Kim N.Y., Kim Y.H., Park J.W., Baek S.H. (2013) Association between MSX1 SNPs and nonsyndromic cleft lip with or without cleft palate in the Korean population. J. Korean Med. Sci., 28, 522–526. PubMed PMC

Setó-Salvia N., Stanier P. (2014) Genetics of cleft lip and/or cleft palate: association with other common anomalies. Eur. J. Med. Genet., 57, 381–393. PubMed

Rahimov F., Jugessur A., Murray J.C. (2012) Genetics of nonsyndromic orofacial clefts. Cleft Palate Craniofac. J., 49, 73–91. PubMed PMC

Leslie E.J., Marazita M.L. (2013) Genetics of cleft lip and cleft palate. Am. J. Med. Genet. C: Semin. Med. Genet., 163C, 246–258. PubMed PMC

Jeong J., Cesario J., Zhao Y., Burns L., Westphal H., Rubenstein J.L. (2012) Cleft palate defect of Dlx1/2-/- mutant mice is caused by lack of vertical outgrowth in the posterior palate. Dev. Dyn., 241, 1757–1769. PubMed PMC

Depew M.J., Simpson C.A., Morasso M., Rubenstein J.L. (2005) Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J. Anat., 207, 501–561. PubMed PMC

Dougherty M., Kamel G., Grimaldi M., Gfrerer L., Shubinets V., Ethier R., Hickey G., Cornell R.A., Liao E.C. (2013) Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis. Development, 140, 76–81. PubMed PMC

Panganiban G., Rubenstein J.L. (2002) Developmental functions of the Distal-less/Dlx homeobox genes. Development, 129, 4371–4386. PubMed

Talbot J.C., Johnson S.L., Kimmel C.B. (2010) hand2 and Dlx genes specify dorsal, intermediate and ventral domains within zebrafish pharyngeal arches. Development, 137, 2507–2517. PubMed PMC

Stock D.W., Ellies D.L., Zhao Z., Ekker M., Ruddle F.H., Weiss K.M. (1996) The evolution of the vertebrate Dlx gene family. Proc. Natl Acad. Sci. U.S.A., 93, 10858–10863. PubMed PMC

Akimenko M.A., Ekker M., Wegner J., Lin W., Westerfield M. (1994) Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J. Neurosci., 14, 3475–3486. PubMed PMC

Solomon K.S., Fritz A. (2002) Concerted action of two dlx paralogs in sensory placode formation. Development, 129, 3127–3136. PubMed

Trinh B.Q., Barengo N., Naora H. (2011) Homeodomain protein DLX4 counteracts key transcriptional control mechanisms of the TGF-β cytostatic program and blocks the antiproliferative effect of TGF-β. Oncogene, 30, 2718–2729. PubMed PMC

Haga S.B., Fu S., Karp J.E., Ross D.D., Williams D.M., Hankins W.D., Behm F., Ruscetti F.W., Chang M., Smith B.D., et al. (2000) BP1, a new homeobox gene, is frequently expressed in acute leukemias. Leukemia, 14, 1867–1875. PubMed

Awwad R.T., Do K., Stevenson H., Fu S.W., Lo-Coco F., Costello M., Campbell C.L., Berg P.E. (2008) Overexpression of BP1, a homeobox gene, is associated with resistance to all-trans retinoic acid in acute promyelocytic leukemia cells. Ann. Hematol., 87, 195–203. PubMed

Neufing P.J., Kalionis B., Horsfall D.J., Ricciardelli C., Stahl J., Vivekanandan S., Raymond W., Tilley W.D. (2013) Expression and localization of homeodomain proteins DLX4/HB9 in normal and malignant human breast tissues. Anticancer Res., 23, 1479–1488. PubMed

Cavalli L.R., Man Y.G., Schwartz A.M., Rone J.D., Zhang Y., Urban C.A., Lima R.S., Haddad B.R., Berg P.E. (2008) Amplification of the BP1 homeobox gene in breast cancer. Cancer Genet. Cytogenet., 187, 19–24. PubMed PMC

Kluk B.J., Fu Y., Formolo T.A., Zhang L., Hindle A.K., Man Y.G., Siegel R.S., Berg P.E., Deng C., McCaffrey T.A., et al. (2010) BP1, an isoform of DLX4 homeoprotein, negatively regulates BRCA1 in sporadic breast cancer. Int. J. Biol. Sci., 6, 513–524. PubMed PMC

Xian Y.S., Dang C.X., Yan C.X., Li H.P., Fu S.W., Wang Z.R. (2006) Clinicopathological significance of homeobox BP1 mRNA expression in lung cancer tissue. Nan Fang Yi Ke Da Xue Xue Bao, 26, 1173–1175. PubMed

Schwartz A.M., Man Y.G., Rezaei M.K., Simmens S.J., Berg P.E. (2009) BP1, a homeoprotein, is significantly expressed in prostate adenocarcinoma and is concordant with prostatic intraepithelial neoplasia. Mod. Pathol., 22, 1–6. PubMed

Hollington P., Neufing P., Kalionis B., Waring P., Bentel J., Wattchow D., Tilley W.D. (2004) Expression and localization of homeodomain proteins DLX4, HB9 and HB24 in malignant and benign human colorectal tissues. Anticancer Res., 24, 955–962. PubMed

Qiu M., Bulfone A., Ghattas I., Meneses J.J., Christensen L., Sharpe P.T., Presley R., Pedersen R.A., Rubenstein J.L. (1997) Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev. Biol., 185, 165–184. PubMed

Sperber S.M., Saxena V., Hatch G., Ekker M. (2008) Zebrafish dlx2a contributes to hindbrain neural crest survival, is necessary for differentiation of sensory ganglia and functions with dlx1a in maturation of the arch cartilage elements. Dev. Biol., 314, 59–70. PubMed

Acampora D., Merlo G.R., Paleari L., Zerega B., Postiglione M.P., Mantero S., Bober E., Barbieri O., Simeone A., Levi G. (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development, 126, 3795–3809. PubMed

Depew M.J., Liu J.K., Long J.E., Presley R., Meneses J.J., Pedersen R.A., Rubenstein J.L. (1999) Dlx5 regulates regional development of the branchial arches and sensory capsules. Development, 126, 3831–3846. PubMed

Martínez-Jacobo L., Córdova-Fletes C., Ortiz-López R., Rivas F., Saucedo-Carrasco C., Rojas-Martínez A. (2013) Delineation of a de novo 7q21.3q31.1 deletion by CGH-SNP arrays in a girl with multiple congenital anomalies including severe glaucoma. Mol. Syndromol., 4, 285–291. PubMed PMC

Wolf Z.T., Leslie E.J., Arzi B., Jayashankar K., Karmi N., Jia Z., Rowland D.J., Young A., Safra N., Sliskovic S., et al. (2014) A LINE-1 insertion in DLX6 is responsible for cleft palate and mandibular abnormalities in a canine model of Pierre Robin sequence. PLOS Genet., 10, e1004257. PubMed PMC

Shamseldin H.E., Faden M.A., Alashram W., Alkuraya F.S. (2012) Identification of a novel DLX5 mutation in a family with autosomal recessive split hand and foot malformation. J. Med. Genet., 49, 16–20. PubMed

Sowińska-Seidler A., Badura-Stronka M., Latos-Bieleńska A., Stronka M., Jamsheer A. (2014) Heterozygous DLX5 nonsense mutation associated with isolated split-hand/foot malformation with reduced penetrance and variable expressivity in two unrelated families. Birth Defects Res. A: Clin. Mol. Teratol., 100, 764–771. PubMed

Wang X., Xin Q., Li L., Li J., Zhang C., Qiu R., Qian C., Zhao H., Liu Y., Shan S., et al. (2014) Exome sequencing reveals a heterozygous DLX5 mutation in a Chinese family with autosomal-dominant split-hand/foot malformation. Eur. J. Hum. Genet., 22, 1105–1110. PubMed PMC

Price J.A., Bowden D.W., Wright J.T., Pettenati M.J., Hart T.C. (1998) Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum. Mol. Genet., 7, 563–569. PubMed

Dong J., Amor D., Aldred M.J., Gu T., Escamilla M., MacDougall M. (2005) DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am. J. Med. Genet., 133A, 138–141. PubMed

Nieminen P., Lukinmaa P.L., Alapulli H., Methuen M., Suojärvi T. (2011) DLX3 homeodomain mutations cause tricho-dento-osseous syndrome with novel phenotypes. Cells Tissues Organs, 194, 49–59. PubMed

Gorlin R.J., Zellweger H., Curtis M.W., Wiedemann H.R., Warburg M., Majewski F., Gillessen-Kaesbach G., Prahl-Andersen B., Zackai E. (1996) Blepharo-cheilo-dontic (BCD) syndrome. Am. J. Med. Genet., 65A, 109–112. PubMed

Iida A., Narai S., Takagi R., Ono K., Ikeda N. (2006) Blepharo-cheilo-dontic (BCD) syndrome: case report. Cleft Palate Craniofac. J., 43, 237–243. PubMed

Weaver K.N., Rutledge K.D., Grant J.H., Robin N.H. (2010) Imperforate anus is a rare associated finding in blepharocheilodontic syndrome. Am. J. Med. Genet., 152A, 438–440. PubMed

Freitas E.L., Martinhago C.D., Ramos E.S., Murray J.C., Gil-da-Silva-Lopes V.L. (2007) Preliminary molecular studies on blepharocheilodontic syndrome. Am. J. Med. Genet., 143A, 2757–2759. PubMed

Gil da Silva Lopes V.L., Guion-Almeida M.L., de Oliveira Rodini E.S. (2003) Blepharocheilodontic (BCD) syndrome: expanding the phenotype? Am. J. Med. Genet., 121A, 266–270. PubMed

Zerucha T., Stühmer T., Hatch G., Park B.K., Long Q., Yu G., Gambarotta A., Schultz J.R., Rubenstein J.L., Ekker M. (2000) A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J. Neurosci., 20, 709–721. PubMed PMC

Ghanem N., Yu M., Poitras L., Rubenstein J.L., Ekker M. (2008) Characterization of a distinct subpopulation of striatal projection neurons expressing the Dlx genes in the basal ganglia through the activity of the I56ii enhancer. Dev. Biol., 322, 415–424. PubMed

Zhang L., Yang M., Gan L., He T., Xiao X., Stewart M.D., Liu X., Yang L., Zhang T., Zhao Y., et al. (2012) DLX4 upregulates TWIST and enhances tumor migration, invasion and metastasis. Int. J. Biol. Sci., 8, 1178–1187. PubMed PMC

Juriloff D.M., Harris M.J., Dewell S.L., Brown C.J., Mager D.L., Gagnier L., Mah D.G. (2005) Investigations of the genomic region that contains the clf1 mutation, a causal gene in multifactorial cleft lip and palate in mice. Birth Defects Res. A: Clin. Mol. Teratol., 73, 103–113. PubMed

Marazita M.L., Murray J.C., Lidral A.C., Arcos-Burgos M., Cooper M.E., Goldstein T., Maher B.S., Daack-Hirsch S., Schultz R., Mansilla M.A., et al. (2004) Meta-analysis of 13 genome scans reveals multiple cleft lip/palate genes with novel loci on 9q21 and 2q32-35. Am. J. Hum. Genet., 75, 161–173. PubMed PMC

Vieira A.R., McHenry T.G., Daack-Hirsch S., Murray J.C., Marazita M.L. (2008) Candidate gene/loci studies in cleft lip/palate and dental anomalies finds novel susceptibility genes for clefts. Genet. Med., 10, 668–674. PubMed PMC

Peanchitlertkajorn S., Cooper M.E., Liu Y.E., Field L.L., Marazita M.L. (2003) Chromosome 17: gene mapping studies of cleft lip with or without cleft palate in Chinese families. Cleft Palate Craniofac. J., 40, 71–79. PubMed

Chase M.B., Fu S., Haga S.B., Davenport G., Stevenson H., Do K., Morgan D., Mah A.L., Berg P.E. (2002) BP1, a homeodomain-containing Isoform of DLX4, represses the b-globin gene. Mol. Cell Biol., 22, 2505–2514. PubMed PMC

Fu S., Stevenson H., Strovel J.W., Haga S.B., Stamberg J., Do K., Berg P.E. (2001) Distinct functions of two isoforms of a homeobox gene, BP1 and DLX7, in the regulation of the beta-globin gene. Gene 278, 131–139. PubMed

Stevenson H.S., Fu S.W., Pinzone J.J., Rheey J., Simmens S.J., Berg P.E. (2007) BP1 transcriptionally activates bcl-2 and inhibits TNFalpha-induced cell death in MCF7 breast cancer cells. Breast Cancer Res., 9, R60. PubMed PMC

Sun Y., Lu X., Yin L., Zhao F., Feng Y. (2006) Inhibition of DLX4 promotes apoptosis in choriocarcinoma cell lines. Placenta, 27, 375–383. PubMed

Shimamoto T., Ohyashiki K., Takeshita K. (2000) Overexpression of the homeobox gene DLX-7 inhibits apoptosis by induced expression of intercellular adhesion molecule-1. Exp. Hematol., 28, 433–441. PubMed

Gallagher E.R., Ratisoontorn C., Cunningham M.L. Saethre-Chotzen Syndrome. In Pagon R.A., Adam M.P., Bird T.D., Dolan C.R., Fong C.T., Stephens K. (eds), GeneReviews™ [Internet]. University of Washington, Seattle, Seattle: (WA: ), 1993–2013. 2003 May 16. PubMed

Stoler J.M., Rogers G.F., Mulliken J.B. (2009) The frequency of palatal anomalies in Saethre-Chotzen syndrome. Cleft Palate Craniofac. J., 46, 280–284. PubMed

Ferrari N., Palmisano G.L., Paleari L., Basso G., Mangioni M., Fidanza V., Albini A., Croce C.M., Levi G., Brigati C. (2003) DLX genes as targets of ALL-1: DLX 2,3,4 down-regulation in t(4;11) acute lymphoblastic leukemias. J. Leukoc. Biol., 74, 302–305. PubMed

Zhou Q.P., Le T.N., Qiu X., Spencer V., de Melo J., Du G., Plews M., Fonseca M., Sun J.M., Davie J.R., et al. (2004) Identification of a direct Dlx homeodomain target in the developing mouse forebrain and retina by optimization of chromatin immunoprecipitation. Nucleic Acids Res., 32, 884–892. PubMed PMC

Suzuki S., Marazita M.L., Cooper M.E., Miwa N., Hing A., Jugessur A., Natsume N., Shimozato K., Ohbayashi N., Suzuki Y., et al. (2009) Mutations in BMP4 are associated with subepithelial, microform, and overt cleft lip. Am. J. Hum. Genet., 84, 406–411. PubMed PMC

Chen Q., Wang H., Hetmanski J.B., Zhang T., Ruczinski I., Schwender H., Liang K.Y., Fallin M.D., Redett R.J., Raymond G.V., et al. (2012) BMP4 was associated with NSCL/P in an Asian population. PLOS ONE 7, e35347. PubMed PMC

Liu W., Sun X., Braut A., Mishina Y., Behringer R.R., Mina M., Martin J.F. (2005) Distinct functions for Bmp signaling in lip and palate fusion in mice. Development, 132, 1453–1461. PubMed

Bonilla-Claudio M., Wang J., Bai Y., Klysik E., Selever J., Martin J.F. (2012) Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development. Development, 139, 709–719. PubMed PMC

He F., Xiong W., Wang Y., Matsui M., Yu X., Chai Y., Klingensmith J., Chen Y. (2010) Modulation of BMP signaling by Noggin is required for the maintenance of palatal epithelial integrity during palatogenesis. Dev. Biol., 347, 109–121. PubMed PMC

Esterberg R., Fritz A. (2009) dlx3b/4b are required for the formation of the preplacodal region and otic placode through local modulation of BMP activity. Dev. Biol., 325, 189–199. PubMed PMC

Liu D., Chu H., Maves L., Yan Y.L., Morcos P.A., Postlethwait J.H., Westerfield M. (2003) Fgf3 and Fgf8 dependent and independent transcription factors are required for otic placode specification. Development, 130, 2213–2224. PubMed

Swartz M.E., Sheehan-Rooney K., Dixon M.J., Eberhart J.K. (2011) Examination of a palatogenic gene program in zebrafish. Dev. Dyn., 240, 2204–2220. PubMed PMC

Yuan Q., Chiquet B.T., Devault L., Warman M.L., Nakamura Y., Swindell E.C., Hecht J.T. (2012) Craniofacial abnormalities result from knock down of nonsyndromic clefting gene, crispld2, in zebrafish. Genesis, 50, 871–881. PubMed PMC

McCarthy N.1., Wetherill L., Lovely C.B., Swartz M.E., Foroud T.M., Eberhart J.K. (2013) Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD. Development, 140, 3254–3265. PubMed PMC

Slavotinek A.M., Mehrotra P., Nazarenko I., Tang P.L., Lao R., Cameron D., Li B., Chu C., Chou C., Marqueling A.L., et al. (2013) Focal facial dermal dysplasia, type IV, is caused by mutations in CYP26C1. Hum. Mol. Genet., 22, 696–703. PubMed PMC

Yahyavi M., Abouzeid H., Gawdat G., de Preux A.S., Xiao T., Bardakjian T., Schneider A., Choi A., Jorgenson E., Baier H., et al. (2013) ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm. Hum. Mol. Genet., 2, 3250–3258. PubMed PMC

Wang K., Li M., Hakonarson H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucl. Acids Res., 38, e164. PubMed PMC

Chang X., Wang K. (2012) wANNOVAR: annotating genetic variants for personal genomes via the web. J. Med. Genet., 49, 433–436. PubMed PMC

Schwarz J.M., Rödelsperger C., Schuelke M., Seelow D. (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods, 7, 575–576. PubMed

Livak K.J., Schmittgen T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408. PubMed

Kaji T., Artinger K.B. (2004) dlx3b and dlx4b function in the development of Rohon-Beard sensory neurons and trigeminal placode in the zebrafish neurula. Dev. Biol., 276, 523–540. PubMed PMC

Walker M.B., Kimmel C.B. (2007) A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech. Histochem., 82, 23–28. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...