A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P50 GM082545
NIGMS NIH HHS - United States
P30 GM103519
NIGMS NIH HHS - United States
R01 GM029158
NIGMS NIH HHS - United States
F31GM105363
NIGMS NIH HHS - United States
F31 GM105363
NIGMS NIH HHS - United States
R01 GM109102
NIGMS NIH HHS - United States
CA35635
NCI NIH HHS - United States
P30 GM103335
NIGMS NIH HHS - United States
R01 GM067777
NIGMS NIH HHS - United States
GM-15792
NIGMS NIH HHS - United States
R01 GM095822
NIGMS NIH HHS - United States
R01 GM054096
NIGMS NIH HHS - United States
GM 095822
NIGMS NIH HHS - United States
GM 109102
NIGMS NIH HHS - United States
GM82545
NIGMS NIH HHS - United States
GM 094363
NIGMS NIH HHS - United States
R01 CA035635
NCI NIH HHS - United States
R01 GM015792
NIGMS NIH HHS - United States
R01 GM094363
NIGMS NIH HHS - United States
GM067777
NIGMS NIH HHS - United States
P30GM103519
NIGMS NIH HHS - United States
GM-29158
NIGMS NIH HHS - United States
PubMed
25997164
PubMed Central
PMC4440767
DOI
10.1371/journal.pone.0126420
PII: PONE-D-15-00280
Knihovny.cz E-zdroje
- MeSH
- kalibrace MeSH
- reprodukovatelnost výsledků MeSH
- ultracentrifugace metody normy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.
Beckman Coulter Inc Life Science Division Indianapolis Indiana 46268 United States of America
Biochemistry Core Facility Max Planck Institute of Biochemistry 82152 Martinsried Germany
Biochemistry Department University of Cambridge Cambridge CB2 1GA United Kingdom
Biophysics Core Facility Scientific Instrument Center Academia Sinica Taipei 115 Taiwan
Biophysics of Macromolecules German Cancer Research Center Heidelberg 69120 Germany
Central Instrument Center Mokpo National University Muan 534 729 Korea
Core Facility International Institute of Molecular and Cell Biology Warsaw 02 109 Poland
Department of Biochemistry and Molecular Biology Tel Aviv University Tel Aviv 69978 Israel
Department of Biology Haverford College Haverford Pennsylvania 19041 United States of America
Department of Chemistry and Biochemistry Concordia University Montreal Quebec H4B 1R6 Canada
Department of Chemistry Mokpo National University Muan 534 729 Korea
Department of Physical Chemistry University of Murcia Murcia 30071 Spain
Diabetes Biophysics Novo Nordisk A S Måløv 2760 Denmark
Enzyme Research Group Concordia University Montreal Quebec H4B 1R6 Canada
ICS 6 Structural Biochemistry Research Center Juelich 52428 Juelich Germany
Institut Pasteur Centre of Biophysics of Macromolecules and Their Interactions Paris 75724 France
Institute for Biophysical Chemistry Hannover Medical School 30625 Hannover Germany
JG Brown Cancer Center University of Louisville Louisville Kentucky 40202 United States of America
Life Science Research Center Nihon University College of Bioresource Science Fujisawa 252 0880 Japan
Molecular Biophysics Suite Department of Biochemistry Oxford Oxon OX1 3QU United Kingdom
Physical Chemistry University of Konstanz 78457 Konstanz Germany
Proteome and Protein Analysis University of Newcastle Newcastle upon Tyne NE1 7RU United Kingdom
Redox Biology Center University of Nebraska Lincoln Lincoln Nebraska 68588 United States of America
Research Complex at Harwell Rutherford Appleton Laboratory Oxfordshire OX11 0FA United Kingdom
Rudolf Virchow Center for Experimental Biomedicine University of Würzburg 97080 Würzburg Germany
School of Life Sciences University of Glasgow Glasgow G37TT United Kingdom
Structural Biology Platform IGBMC Illkirch 67400 France
Technology Facility Department of Biology University of York York YO10 5DD United Kingdom
Wadsworth Center New York State Department of Health Albany New York 12208 United States of America
Zobrazit více v PubMed
Svedberg T, Pedersen KO. The ultracentrifuge London: Oxford University Press; 1940.
Schuck P. Analytical ultracentrifugation as a tool for studying protein interactions. Biophys Rev. 2013; 5: 159–171. 10.1007/s12551-013-0106-2 PubMed DOI PMC
Aragon SR. Recent advances in macromolecular hydrodynamic modeling. Methods. 2011; 54: 101–114. 10.1016/j.ymeth.2010.10.005 PubMed DOI PMC
Ortega A, Amorós D, García de la Torre J. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J. 2011; 101: 892–898. 10.1016/j.bpj.2011.06.046 PubMed DOI PMC
Byron O. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data. Biophys J. 1997; 72: 408–415. 10.1016/S0006-3495(97)78681-8 PubMed DOI PMC
Perkins SJ, Nan R, Li K, Khan S, Abe Y. Analytical ultracentrifugation combined with X-ray and neutron scattering: Experiment and modelling. Methods. 2011; 54: 181–199. 10.1016/j.ymeth.2011.01.004 PubMed DOI
Rai N, Nöllmann M, Spotorno B, Tassara G, Byron O, Rocco M. SOMO (SOlution MOdeler) differences between X-Ray- and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics. Structure. 2005; 13: 723–734. 10.1016/j.str.2005.02.012 PubMed DOI
Ebel C. Sedimentation velocity to characterize surfactants and solubilized membrane proteins. Methods. 2011; 54: 56–66. 10.1016/j.ymeth.2010.11.003 PubMed DOI
Silvera Batista CA, Zheng M, Khripin CY, Tu X, Fagan JA. Rod hydrodynamics and length distributions of single-wall carbon nanotubes using analytical ultracentrifugation. Langmuir. 2014; 30: 4895–4904. 10.1021/la404892k PubMed DOI
Carney RP, Kim JY, Qian H, Jin R, Mehenni H, Stellacci F, et al. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. Nat Commun. 2011; 2: 335 10.1038/ncomms1338 PubMed DOI PMC
Liu J, Andya JD, Shire SJ. A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J. 2006; 8: E580–E589. 10.1208/aapsj080367 PubMed DOI PMC
Berkowitz SA. Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. AAPS J. 2006; 8: E590–E605. 10.1208/aapsj080368 PubMed DOI PMC
Gabrielson JP, Brader ML, Pekar AH, Mathis KB, Winter G, Carpenter JF, et al. Quantitation of aggregate levels in a recombinant humanized monoclonal antibody formulation by size exclusion chromatography, asymmetrical flow field flow fractionation, and sedimentation velocity. J Pharm Sci. 2007; 96: 268–279. 10.1002/jps.20760 PubMed DOI
Gabrielson JP, Arthur KK. Measuring low levels of protein aggregation by sedimentation velocity. Methods. 2011; 54: 83–91. 10.1016/j.ymeth.2010.12.030 PubMed DOI
Philo JS. A critical review of methods for size characterization of non-particulate protein aggregates. Curr Pharm Biotechnol. 2009; 10: 359–372. PubMed
Pekar AH, Sukumar M. Quantitation of aggregates in therapeutic proteins using sedimentation velocity analytical ultracentrifugation: practical considerations that affect precision and accuracy. Anal Biochem. 2007; 367: 225–237. 10.1016/j.ab.2007.04.035 PubMed DOI
Berkowitz SA, Engen JR, Mazzeo JR, Jones GB. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov. 2012; 11: 527–540. 10.1038/nrd3746 PubMed DOI PMC
Zhao H, Mayer ML, Schuck P. Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity. Anal Chem. 2014; 18: 3181–3187. 10.1021/ac500093m PubMed DOI PMC
Zhao H, Casillas E, Shroff H, Patterson GH, Schuck P. Tools for the Quantitative Analysis of Sedimentation Boundaries Detected by Fluorescence Optical Analytical Ultracentrifugation. PLoS One. 2013; 8: e77245 10.1371/journal.pone.0077245 PubMed DOI PMC
Kingsbury JS, Laue TM. Fluorescence-detected sedimentation in dilute and highly concentrated solutions. Methods Enzym. 2011; 492: 283–304. 10.1016/B978-0-12-381268-1.00021-5 PubMed DOI
Gabrielson JP, Arthur KK, Stoner MR, Winn BC, Kendrick BS, Razinkov V, et al. Precision of protein aggregation measurements by sedimentation velocity analytical ultracentrifugation in biopharmaceutical applications. Anal Biochem. 2009; 396: 231–241. 10.1016/j.ab.2009.09.036 PubMed DOI
Arthur KK, Gabrielson JP, Kendrick BS, Stoner MR. Detection of protein aggregates by sedimentation velocity analytical ultracentrifugation (SV-AUC): Sources of variability and their relative importance. J Pharm Sci. 2009; 98: 3522–3539. 10.1002/jps.21654 PubMed DOI
Krayukhina E, Uchiyama S, Nojima K, Okada Y, Hamaguchi I, Fukui K. Aggregation analysis of pharmaceutical human immunoglobulin preparations using size-exclusion chromatography and analytical ultracentrifugation sedimentation velocity. J Biosci Bioeng. 2013; 4: 104–110 10.1016/j.jbiosc.2012.07.021 PubMed DOI
Taylor JF. The determination of sedimentation constant with the Spinco ultracentrifuge. Arch Biochem Biophys. 1952; 36: 357–364. 10.1016/0003-9861(52)90421-9 PubMed DOI
Errington N, Rowe AJ. Probing conformation and conformational change in proteins is optimally undertaken in relative mode. Eur Biophys J. 2003; 32: 511–517. 10.1007/s00249-003-0315-x PubMed DOI
Cecil R, Ogston AG. The accuracy of the Svedberg oil-turbine ultracentrifuge. Biochem J. 1948; 43: 592–598. PubMed PMC
Ghirlando R, Balbo A, Piszczek G, Brown PH, Lewis MS, Brautigam CA, et al. Improving the thermal, radial, and temporal accuracy of the analytical ultracentrifuge through external references. Anal Biochem. 2013; 440: 81–95. 10.1016/j.ab.2013.05.011 PubMed DOI PMC
Henrion M, Fischhoff B. Assessing uncertainty in physical constants. Am J Phys. 1986; 54: 791 10.1119/1.14447 DOI
Shulman S. The determination of sedimentation constants with the oil-turbine and spinco ultracentrifuges. Arch Biochem Biophys. 1953; 44: 230–240. 10.1016/0003-9861(53)90028-9 PubMed DOI
Miller GL, Golder RH. Sedimentation studies with the Spinco ultracentrifuge. Arch Biochem Biophys. 1952; 36: 249–258. 10.1016/0003-9861(52)90409-8 PubMed DOI
Zhao H, Ghirlando R, Piszczek G, Curth U, Brautigam CA, Schuck P. Recorded scan times can limit the accuracy of sedimentation coefficients in analytical ultracentrifugation. Anal Biochem. 2013; 437: 104–108. 10.1016/j.ab.2013.02.011 PubMed DOI PMC
Jakoby W. Recorded scan times can limit the accuracy of sedimentation coefficients in analytical ultracentrifugation. Anal Biochem. 2013; 437: 103 10.1016/j.ab.2013.02.017 PubMed DOI
Zhao H, Balbo A, Metger H, Clary R, Ghirlando R, Schuck P. Improved measurement of the rotor temperature in analytical ultracentrifugation. Anal Biochem. 2014; 451: 69–75. 10.1016/j.ab.2014.02.006 PubMed DOI PMC
Ghirlando R, Zhao H, Balbo A, Piszczek G, Curth U, Brautigam CA, et al. Measurement of the temperature of the resting rotor in analytical ultracentrifugation. Anal Biochem. 2014; 458: 37–39. 10.1016/j.ab.2014.04.029 PubMed DOI PMC
Kar SR, Kingsbury JS, Lewis MS, Laue TM, Schuck P. Analysis of transport experiment using pseudo-absorbance data. Anal Biochem. 2000; 285: 135–142. 10.1006/abio.2000.4748 PubMed DOI
Brown PH, Balbo A, Schuck P. On the analysis of sedimentation velocity in the study of protein complexes. Eur Biophys J. 2009; 38: 1079–1099. 10.1007/s00249-009-0514-1 PubMed DOI PMC
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000; 78: 1606–1619. 10.1016/S0006-3495(00)76713-0 PubMed DOI PMC
Laue TM, Shah BD, Ridgeway TM, Pelletier SL. Computer-aided interpretation of analytical sedimentation data for proteins In: Harding SE, Rowe AJ, Horton JC, editors. Analytical Ultracentrifugation in Biochemistry and Polymer Science. Cambridge: The Royal Society of Chemistry; 1992. pp. 90–125. 10.1007/s00249-009-0425-1 DOI
Waugh DF, Yphantis DA. Rotor temperature measurement and control in the ultracentrifuge. Rev Sci Instrum. 1952; 23: 609–614. 10.1063/1.1746108 DOI
Perlman GE, Longsworth LG. The specific refractive increment of some purified proteins. Am Chem Soc. 1948; 111: 2719–2724. 10.1021/ja01188a027 PubMed DOI
Zhao H, Brown PH, Schuck P. On the distribution of protein refractive index increments. Biophys J.; 100: 2309–2317. 10.1016/j.bpj.2011.03.004 PubMed DOI PMC