Soy and breast cancer: focus on angiogenesis

. 2015 May 22 ; 16 (5) : 11728-49. [epub] 20150522

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26006245

Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK), etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms.

Zobrazit více v PubMed

DeSantis C., Ma J., Bryan L., Jemal A. Breast cancer statistics, 2013. CA Cancer J. Clin. 2014;64:52–62. doi: 10.3322/caac.21203. PubMed DOI

Xie Q., Chen M.L., Qin Y., Zhang Q.Y., Xu H.X., Zhou Y., Mi M.T., Zhu J.D. Isoflavone consumption and risk of breast cancer: A dose-response meta-analysis of observational studies. Asia Pac. J. Clin. Nutr. 2013;22:118–127. PubMed

Shimizu H., Ross R.K., Bernstein L., Yatani R., Henderson B.E., Mack T.M. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles Country. Br. J. Cancer. 1991;63:963–966. doi: 10.1038/bjc.1991.210. PubMed DOI PMC

Wu A.H., Ziegler R.G., Horn-Ross P.L., Nomura A.M., West D.W., Kolonel L.N., Rosenthal J.F., Hoover R.N., Pike M.C. Tofu and risk of breast cancer in Asian-Americans. Cancer Epidemiol. Biomark. Prev. 1996;5:901–906. PubMed

Korde L.A., Wu A.H., Fears T., Nomura A.M., West D.W., Kolonel L.N., Pike M.C., Hoover R.N., Ziegler R.G. Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol. Biomark. Prev. 2009;18:1050–1059. doi: 10.1158/1055-9965.EPI-08-0405. PubMed DOI

Shu X.O., Zheng Y., Cai H., Gu K., Chen Z., Zheng W., Lu W. Food intake and breast cancer survival. JAMA. 2009;302:2437–2443. doi: 10.1001/jama.2009.1783. PubMed DOI PMC

Messina M., Nagata C., Wu A.H. Estimated Asian adult soy protein and isoflavone intakes. Nutr. Cancer. 2006;55:1–12. doi: 10.1207/s15327914nc5501_1. PubMed DOI

Horn-Ross P.L., John E.M., Lee M., Stewart S.L., Koo J., Sakoda L.C., Shiau A.C., Goldstein J., Davis P., Perez-Stable E.J. Phytoestrogen consumption and breast cancer risk in a multiethnic population: The Bay Area Breast Cancer Study. Am. J. Epidemiol. 2001;154:434–441. doi: 10.1093/aje/154.5.434. PubMed DOI

Lee H.P., Gourley L., Duffy S.W., Esteve J., Lee J., Day N.E. Dietary effects on breast-cancer risk in Singapore. Lancet. 1991;337:1197–1200. doi: 10.1016/0140-6736(91)92867-2. PubMed DOI

Wu A.H., Yu M.C., Tseng C.C., Pike M.C. Epidemiology of soy exposures and breast cancer risk. Br. J. Cancer. 2008;98:9–14. doi: 10.1038/sj.bjc.6604145. PubMed DOI PMC

Liu X.O., Huang Y.B., Gao Y., Chen C., Yan Y., Dai H.J., Song F.J., Wang Y.G., Wang P.S., Chen K.X. Association between dietary factors and breast cancer risk among Chinese females: Systematic review and meta-analysis. Asian Pac. J. Cancer Prev. 2014;15:1291–1298. doi: 10.7314/APJCP.2014.15.3.1291. PubMed DOI

Wu Y.C., Zheng D., Sun J.J., Zou Z.K., Ma Z.L. Meta-analysis of studies on breast cancer risk and diet in Chinese women. Int. J. Clin. Exp. Med. 2015;8:73–85. PubMed PMC

Zhu Y.Y., Zhou L., Jiao S.C., Xu L.Z. Relationship between soy food intake and breast cancer in China. Asian Pac. J. Cancer Prev. 2011;12:2837–2840. PubMed

Dong J.Y., Qin L.Q. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: A meta-analysis of prospective studies. Breast Cancer Res. Treat. 2011;125:315–323. doi: 10.1007/s10549-010-1270-8. PubMed DOI

Chan H.Y., Leung L.K. A potential protective mechanism of soya isoflavones against 7,12-dimethylbenz[a]anthracene tumour initiation. Br. J. Nutr. 2003;90:457–465. doi: 10.1079/BJN2003913. PubMed DOI

Taylor C.K., Levy R.M., Elliott J.C., Burnett B.P. The effect of genistein aglycone on cancer and cancer risk: A review of in vitro, preclinical, and clinical studies. Nutr. Rev. 2009;67:398–415. doi: 10.1111/j.1753-4887.2009.00213.x. PubMed DOI

Valeri A., Fiorenzani P., Rossi R., Aloisi A.M., Valoti M., Pessina F. The soy phytoestrogens genistein and daidzein as neuroprotective agents against anoxia-glucopenia and reperfusion damage in rat urinary bladder. Pharmacol. Res. 2012;66:309–316. doi: 10.1016/j.phrs.2012.06.007. PubMed DOI

Ko K.P., Kim C.S., Ahn Y., Park S.J., Kim Y.J., Park J.K., Lim Y.K., Yoo K.Y., Kim S.S. Plasma isoflavone concentration is associated with decreased risk of type 2 diabetes in Korean women but not men: Results from the Korean Genome and Epidemiology Study. Diabetologia. 2015;58:726–735. doi: 10.1007/s00125-014-3463-x. PubMed DOI

Constantinou A.I., Lantvit D., Hawthorne M., Xu X., van Breemen R.B., Pezzuto J.M. Chemopreventive effects of soy protein and purified soy isoflavones on DMBA-induced mammary tumors in female Sprague-Dawley rats. Nutr. Cancer. 2001;41:75–81. doi: 10.1080/01635581.2001.9680615. PubMed DOI

Horie S. Chemoprevention of prostate cancer: Soy isoflavones and curcumin. Korean J. Urol. 2012;53:665–672. doi: 10.4111/kju.2012.53.10.665. PubMed DOI PMC

Wada K., Nakamura K., Tamai Y., Tsuji M., Kawachi T., Hori A., Takeyama N., Tanabashi S., Matsushita S., Tokimitsu N., et al. Soy isoflavone intake and breast cancer risk in Japan: From the Takayama study. Int. J. Cancer. 2013;133:952–960. doi: 10.1002/ijc.28088. PubMed DOI

Lim E., Metzger-Filho O., Winer E.P. The natural history of hormone receptor-positive breast cancer. Oncology. 2012;26:688–694. PubMed

Messina M., Hilakivi-Clarke L. Early intake appears to be the key to the proposed protective effects of soy intake against breast cancer. Nutr. Cancer. 2009;61:792–798. doi: 10.1080/01635580903285015. PubMed DOI

Dixon R.A. Phytoestrogens. Annu. Rev. Plant Biol. 2004;55:225–261. doi: 10.1146/annurev.arplant.55.031903.141729. PubMed DOI

Hsieh C.Y., Santell R.C., Haslam S.Z., Helferich W.G. Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res. 1998;58:3833–3838. PubMed

Zava D.T., Duwe G. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr. Cancer. 1997;27:31–40. doi: 10.1080/01635589709514498. PubMed DOI

Song M., Tian X., Lu M., Zhang X., Ma K., Lv Z., Wang Z., Hu Y., Xun C., Zhang Z., et al. Genistein exerts growth inhibition on human osteosarcoma MG-63 cells via PPARγ pathway. Int. J. Oncol. 2015 doi: 10.3892/ijo.2015.2829. PubMed DOI

Liu X., Ye F., Wu J., How B., Li W., Zhang D.Y. Signaling proteins and pathways affected by flavonoids in leukemia cells. Nutr. Cancer. 2015;14:1–12. doi: 10.1080/01635581.2015.1037961. PubMed DOI

Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 1997;262:5592–5595. PubMed

Mizushina Y., Shiomi K., Kuriyama I., Takahashi Y., Yoshida H. Inhibitory effects of a major soy isoflavone, genistein, on human DNA topoisomerase II activity and cancer cell proliferation. Int. J. Oncol. 2013;43:1117–1124. PubMed

Zhou N., Yan Y., Li W., Wang Y., Zheng L., Han S., Yan Y., Li Y. Genistein inhibition of topoisomerase IIα expression participated by Sp1 and Sp3 in HeLa cell. Int. J. Mol. Sci. 2009;10:3255–3268. doi: 10.3390/ijms10073255. PubMed DOI PMC

Aggarwal B.B., Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006;71:1397–1421. doi: 10.1016/j.bcp.2006.02.009. PubMed DOI

Choi E.J., Kim G.H. Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine. 2008;15:683–690. doi: 10.1016/j.phymed.2008.04.006. PubMed DOI

Choi Y.H., Zhang L., Lee W.H., Park K.Y. Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int. J. Oncol. 1998;13:391–396. PubMed

Sarkar F.H., Li Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev. 2002;21:265–280. doi: 10.1023/A:1021210910821. PubMed DOI

Li Z., Li J., Mo B., Hu C., Liu H., Qi H., Wang X., Xu J. Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol. In Vitro. 2008;22:1749–1753. doi: 10.1016/j.tiv.2008.08.001. PubMed DOI

Adams R.H., Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 2007;8:464–478. doi: 10.1038/nrm2183. PubMed DOI

Bhadada S.V., Goyal B.R., Patel M.M. Angiogenic targets for potential disorders. Fundam. Clin. Pharmacol. 2011;25:29–47. doi: 10.1111/j.1472-8206.2010.00814.x. PubMed DOI

Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–364. doi: 10.1016/S0092-8674(00)80108-7. PubMed DOI

Folkman J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971;285:1182–1186. doi: 10.1056/NEJM197108122850711. PubMed DOI

Ferrara N. VEGF as a therapeutic target in cancer. Oncology. 2005;69:11–16. doi: 10.1159/000088479. PubMed DOI

Claesson-Welsh L., Welsh M. VEGFA and tumour angiogenesis. J. Intern. Med. 2013;273:114–127. doi: 10.1111/joim.12019. PubMed DOI

Wehland M., Bauer J., Infanger M., Grimm D. Primary tumor cells, stromal cells and cancer stem cells strongly influence vessel growth in tumors. Curr. Pharm. Des. 2012;18:4244–4257. doi: 10.2174/138161212802430468. PubMed DOI

Vasudev N.S., Reynolds A.R. Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471–494. doi: 10.1007/s10456-014-9420-y. PubMed DOI PMC

Miller K., Wang M., Gralow J., Dickler M., Cobleigh M., Perez E.A., Shenkier T., Cella D., Davidson N.E. Paclitaxel plus bevacizumab vs. paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 2007;357:2666–2676. doi: 10.1056/NEJMoa072113. PubMed DOI

Miles D.W., Chan A., Dirix L.Y., Cortés J., Pivot X., Tomczak P., Delozier T., Sohn J.H., Provencher L., Puglisi F., et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 2010;28:3239–3247. doi: 10.1200/JCO.2008.21.6457. PubMed DOI

Robert N.J., Saleh M.N., Paul D., Generali D., Gressot L., Copur M.S., Brufsky A.M., Minton S.E., Giguere J.K., Smith J.W., 2nd, et al. Sunitinib plus paclitaxel vs. bevacizumab plus paclitaxel for first-line treatment of patients with advanced breast cancer: A phase III, randomized, open-label trial. Clin. Breast Cancer. 2011;11:82–92. doi: 10.1016/j.clbc.2011.03.005. PubMed DOI PMC

Brufsky A.M., Hurvitz S., Perez E., Swamy R., Valero V., O’Neill V., Rugo H.S. RIBBON-2: A randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 2011;29:4286–4293. doi: 10.1200/JCO.2010.34.1255. PubMed DOI

Grothey A., Flick E.D., Cohn A.L., Bekaii-Saab T.S., Bendell J.C., Kozloff M., Roach N., Mun Y., Fish S., Hurwitz H.I. Bevacizumab exposure beyond first disease progression in patients with metastatic colorectal cancer: Analyses of the ARIES observational cohort study. Pharmacoepidemiol. Drug Saf. 2014;23:726–734. doi: 10.1002/pds.3633. PubMed DOI

Grothey A., Sugrue M.M., Purdie D.M., Dong W., Sargent D., Hedrick E., Kozloff M. Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer: Results from a large observational cohort study (BRiTE) J. Clin. Oncol. 2008;26:5326–5334. doi: 10.1200/JCO.2008.16.3212. PubMed DOI

Von Minckwitz G., Puglisi F., Cortes J., Vrdoljak E., Marschner N., Zielinski C., Villanueva C., Romieu G., Lang I., Ciruelos E., et al. Bevacizumab plus chemotherapy vs. chemotherapy alone as second-line treatment for patients with HER2-negative locally recurrent or metastatic breast cancer after first-line treatment with bevacizumab plus chemotherapy (TANIA): An open-label, randomised phase 3 trial. Lancet Oncol. 2014;15:1269–1278. doi: 10.1016/S1470-2045(14)70439-5. PubMed DOI

Gligorov J., Doval D., Bines J., Alba E., Cortes P., Pierga J.Y., Gupta V., Costa R., Srock S., de Ducla S., et al. Maintenance capecitabine and bevacizumab vs. bevacizumab alone after initial first-line bevacizumab and docetaxel for patients with HER2-negative metastatic breast cancer (IMELDA): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1351–1360. doi: 10.1016/S1470-2045(14)70444-9. PubMed DOI

Robert N.J., Diéras V., Glaspy J., Brufsky A.M., Bondarenko I., Lipatov O.N., Perez E.A., Yardley D.A., Chan S.Y., Zhou X., et al. RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol. 2011;29:1252–1260. doi: 10.1200/JCO.2010.28.0982. PubMed DOI

Bergh J., Mariani G., Cardoso F., Liljegren A., Awada A., Viganò L., Huang X., Verkh L., Kern K.A., Giorgetti C., et al. Clinical and pharmacokinetic study of sunitinib and docetaxel in women with advanced breast cancer. Breast. 2012;21:507–513. doi: 10.1016/j.breast.2012.01.012. PubMed DOI

Crown J.P., Diéras V., Staroslawska E., Yardley D.A., Bachelot T., Davidson N., Wildiers H., Fasching P.A., Capitain O., Ramos M., et al. Phase III trial of sunitinib in combination with capecitabine vs. capecitabine monotherapy for the treatment of patients with pretreated metastatic breast cancer. J. Clin. Oncol. 2013;31:2870–2878. doi: 10.1200/JCO.2012.43.3391. PubMed DOI

Sun M., Larcher A., Karakiewicz P.I. Optimal first-line and second-line treatments for metastatic renal cell carcinoma: Current evidence. Int. J. Nephrol. Renovasc. Dis. 2014;29:401–407. doi: 10.2147/IJNRD.S48496. PubMed DOI PMC

Piccart M., Hortobagyi G.N., Campone M., Pritchard K.I., Lebrun F., Ito Y., Noguchi S., Perez A., Rugo H.S., Deleu I., et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Overall survival results from BOLERO-2. Ann. Oncol. 2014;25:2357–2362. doi: 10.1093/annonc/mdu456. PubMed DOI PMC

Chen J., Yao Q., Li D., Zhang J., Wang T., Yu M., Zhou X., Huan Y., Wang J., Wang L. Neoadjuvant rh-endostatin, docetaxel and epirubicin for breast cancer: Efficacy and safety in a prospective, randomized, phase II study. BMC Cancer. 2013;21:248. doi: 10.1186/1471-2407-13-248. PubMed DOI PMC

Yang F., Zhang W., Shen Y., Guan X. Identification of dysregulated microRNAs in triple-negative breast cancer (Review) Int. J. Oncol. 2015 doi: 10.3892/ijo.2015.2821. PubMed DOI

Calixto J.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents) Braz. J. Med. Biol. Res. 2000;33:179–189. doi: 10.1590/S0100-879X2000000200004. PubMed DOI

Bear H.D., Tang G., Rastogi P., Geyer C.E., Jr., Robidoux A., Atkins J.N., Baez-Diaz L., Brufsky A.M., Mehta R.S., Fehrenbacher L., et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N. Engl. J. Med. 2012;366:310–320. doi: 10.1056/NEJMoa1111097. PubMed DOI PMC

Von Minckwitz G., Eidtmann H., Rezai M., Fasching P.A., Tesch H., Eggemann H., Schrader I., Kittel K., Hanusch C., Kreienberg R., et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N. Engl. J. Med. 2012;366:299–309. doi: 10.1056/NEJMoa1111065. PubMed DOI

Von Minckwitz G., Loibl S., Untch M., Eidtmann H., Rezai M., Fasching P.A., Tesch H., Eggemann H., Schrader I., Kittel K., et al. Survival after neoadjuvant chemotherapy with or without bevacizumab or everolimus for HER2-negative primary breast cancer (GBG 44-GeparQuinto)†. Ann. Oncol. 2014;25:2363–2372. doi: 10.1093/annonc/mdu455. PubMed DOI

Cameron D., Brown J., Dent R., Jackisch C., Mackey J., Pivot X., Steger G.G., Suter T.M., Toi M., Parmar M., et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): Primary results of a randomised, phase 3 trial. Lancet Oncol. 2013;14:933–942. doi: 10.1016/S1470-2045(13)70335-8. PubMed DOI

Gianni L., Romieu G.H., Lichinitser M., Serrano S.V., Mansutti M., Pivot X., Mariani P., Andre F., Chan A., Lipatov O., et al. AVEREL: A randomized phase III Trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J. Clin. Oncol. 2013;31:1719–1725. doi: 10.1200/JCO.2012.44.7912. PubMed DOI

Baselga J., Costa F., Gomez H., Hudis C.A., Rapoport B., Roche H., Schwartzberg L.S., Petrenciuc O., Shan M., Gradishar W.J. A phase 3 trial comparing capecitabine in combination with Sorafenib or placebo for treatment of locally advanced or metastatic HER2-negative breast cancer (the RESILIENCE study): Study protocol for a randomized controlled trial. Trials. 2013;14:228. doi: 10.1186/1745-6215-14-228. PubMed DOI PMC

Miller K.D., Chap L.I., Holmes F.A., Cobleigh M.A., Marcom P.K., Fehrenbacher L., Dickler M., Overmoyer B.A., Reimann J.D., Sing A.P., et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J. Clin. Oncol. 2005;23:792–799. doi: 10.1200/JCO.2005.05.098. PubMed DOI

André F., O’Regan R., Ozguroglu M., Toi M., Xu B., Jerusalem G., Masuda N., Wilks S., Arena F., Isaacs C., et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15:580–591. doi: 10.1016/S1470-2045(14)70138-X. PubMed DOI

Barrios C.H., Liu M.C., Lee S.C., Vanlemmens L., Ferrero J.M., Tabei T., Pivot X., Iwata H., Aogi K., Lugo-Quintana R., et al. Phase III randomized trial of sunitinib vs. capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res. Treat. 2010;121:121–131. doi: 10.1007/s10549-010-0788-0. PubMed DOI PMC

Nishida N., Yano H., Nishida T., Kamura T., Kojiro M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006;2:213–219. doi: 10.2147/vhrm.2006.2.3.213. PubMed DOI PMC

Mojzis J., Varinska L., Mojzisova G., Kostova I., Mirossay L. Antiangiogenic effects of flavonoids and chalcones. Pharmacol. Res. 2008;57:259–265. doi: 10.1016/j.phrs.2008.02.005. PubMed DOI

Pilátová M., Stupáková V., Varinská L., Sarisský M., Mirossay L., Mirossay A., Gál P., Kraus V., Dianisková K., Mojzis J. Effect of selected flavones on cancer and endothelial cells. Gen. Physiol. Biophys. 2010;29:134–143. doi: 10.4149/gpb_2010_02_134. PubMed DOI

Kumazawa S., Kubota S., Yamamoto H., Okamura N., Sugiyamab Y., Kobayashia H., Nakanishi M., Ohta T. Antiangiogenic activity of flavonoids from Melia azedarach. Nat. Prod. Commun. 2013;8:1719–1720. PubMed

Zhang M., Liu C., Zhang Z., Yang S., Zhang B., Yin L., Swarts S., Vidyasagar S., Zhang L., Okunieff P. A new flavonoid regulates angiogenesis and reactive oxygen species production. Adv. Exp. Med. Biol. 2014;812:149–155. PubMed

Ivanova L., Varinska L., Pilatova M., Gal P., Solar P., Perjesi P., Smetana K., Jr., Ostro A., Mojzis J. Cyclic chalcone analogue KRP6 as a potent modulator of cell proliferation: An in vitro study in HUVECs. Mol. Biol. Rep. 2013;40:4571–4580. doi: 10.1007/s11033-013-2547-x. PubMed DOI

Varinska L., van Wijhe M., Belleri M., Mitola S., Perjesi P., Presta M., Koolwijk P., Ivanova L., Mojzis J. Anti-angiogenic activity of the flavonoid precursor 4-hydroxychalcone. Eur. J. Pharmacol. 2012;691:125–133. doi: 10.1016/j.ejphar.2012.06.017. PubMed DOI

Pilatova M., Varinska L., Perjesi P., Sarissky M., Mirossay L., Solar P., Ostro A., Mojzis J. In vitro antiproliferative and antiangiogenic effects of synthetic chalcone analogues. Toxicol. In Vitro. 2010;24:1347–1355. doi: 10.1016/j.tiv.2010.04.013. PubMed DOI

Mojzis J., Sarisský M., Pilátová M., Voharová V., Varinská L., Mojzisová G., Ostro A., Urdzík P., Dankovcik R., Mirossay L. In vitro antiproliferative and antiangiogenic effects of Flavin7. Physiol. Res. 2008;57:413–420. PubMed

Fotsis T., Pepper M., Adlercreutz H., Fleischmann G., Hase T., Montesano R., Schweigerer L. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc. Natl. Acad. Sci. USA. 1993;90:2690–2694. doi: 10.1073/pnas.90.7.2690. PubMed DOI PMC

Fotsis T., Pepper M., Adlercreutz H., Hase T., Montesano R., Schweigerer L. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J. Nutr. 1995;125:790–797. PubMed

Nagaraju G.P., Zafar S.F., el-Rayes B.F. Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutr. Rev. 2013;71:562–572. doi: 10.1111/nure.12044. PubMed DOI

Gacche R.N., Meshram R.J. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim. Biophys. Acta. 2014;1846:161–179. PubMed

Guo Y., Wang S., Hoot D.R., Clinton S.K. Suppression of VEGF-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones. J. Nutr. Biochem. 2007;18:408–417. doi: 10.1016/j.jnutbio.2006.08.006. PubMed DOI

Levy A.P., Levy N.S., Goldberg M.A. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J. Biol. Chem. 1996;271:2746–2753. doi: 10.1074/jbc.271.5.2746. PubMed DOI

Yu X., Mi M., Zhu J. Genistein inhibits the expression of vascular endothelial growth factor in MDA-MB-453 breast cancer cells. U.S. Chin. J. Lymphol. Oncol. 2008;7:8–13.

Su S.J., Yeh T.M., Chuang W.J., Ho C.L., Chang K.L., Cheng H.L., Liu H.S., Cheng H.L., Hsu P.Y., Chow N.H. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem. Pharmacol. 2005;69:307–318. doi: 10.1016/j.bcp.2004.09.025. PubMed DOI

Büchler P., Reber H.A., Büchler M.W., Friess H., Lavey R.S., Hines O.J. Antiangiogenic activity of genistein in pancreatic carcinoma cells is mediated by the inhibition of hypoxia-inducible factor-1 and the down-regulation of VEGF gene expression. Cancer. 2004;100:201–210. doi: 10.1002/cncr.11873. PubMed DOI

Aditya N.P., Shim M., Yang H., Lee Y.J., Ko S. Antiangiogenic effect of combined treatment with curcumin and genistein on human prostate cancer cell line. J. Funct. Food. 2014;8:204–213. doi: 10.1016/j.jff.2014.03.014. DOI

Ambra R., Rimbach G., de Pascual Teresa S., Fuchs D., Wenzel U., Daniel H., Virgili F. Genistein affects the expression of genes involved in blood pressure regulation and angiogenesis in primary human endothelial cells. Nutr. Metab. Cardiovasc. Dis. 2006;16:35–43. doi: 10.1016/j.numecd.2005.03.003. PubMed DOI

Zhou J.R., Gugger E.T., Tanaka T., Guo Y., Blackburn G.L., Clinton S.K. Soybean phytochemicals inhibit the growth of transplantable human prostate carcinoma and tumor angiogenesis in mice. J. Nutr. 1999;129:1628–1635. PubMed

Bakkiyanathan A., Joseph A.M., Tharani L., Malathi R. Genistein, the phytoestrogen induces heart-and-soul (has) phenotypes in zebrafish embryo. J. Dev. Biol. Tissue Eng. 2010;2:18–22.

Mukhopadhyay S., Ballard B.R., Mukherjee S., Kabir S.M., Das S.K. Beneficial effects of soy protein in the initiation and progression against dimethylbenz(a) anthracene-induced breast tumors in female rats. Mol. Cell. Biochem. 2006;290:169–176. doi: 10.1007/s11010-006-9184-9. PubMed DOI

Hennet T. Diseases of glycosylation. In: Gabius H.-J., editor. The Sugar Code: Fundamentals of Glycosciences. Wiley-VCH; Weinheim, Germany: 2009. pp. 365–383.

Honke K., Taniguchi N. Animal models to delineate glycan functionality. In: Gabius H.-J., editor. The Sugar Code. Fundamentals of Glycosciences. Wiley-VCH; Weinheim, Germany: 2009. pp. 385–401.

Nyberg P., Salo T., Kalluri R. Tumor microenvironment and angiogenesis. Front. Biosci. 2008;13:6537–6553. doi: 10.2741/3173. PubMed DOI

Rabbani S.A., Mazar A.P. The role of the plasminogen activation system in angiogenesis and metastasis. Surg. Oncol. Clin. N. Am. 2001;10:393–415. PubMed

Rundhaug J.E. Matrix metalloproteinases and angiogenesis. J. Cell Mol. Med. 2005;9:267–285. doi: 10.1111/j.1582-4934.2005.tb00355.x. PubMed DOI PMC

Hadler-Olsen E., Winberg J.O., Uhlin-Hansen L. Matrix metalloproteinases in cancer: Their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 2013;34:2041–2051. doi: 10.1007/s13277-013-0842-8. PubMed DOI

Kim M.H. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J. Cell. Biochem. 2003;89:529–538. doi: 10.1002/jcb.10543. PubMed DOI

Kumi-Diaka J.K., Hassanhi M., Merchant K., Horman V. Influence of genistein isoflavone on matrix metalloproteinase-2 expression in prostate cancer cells. J. Med. Food. 2006;9:491–497. doi: 10.1089/jmf.2006.9.491. PubMed DOI

Latocha M., Płonka J., Kuśmierz D., Jurzak M., Polaniak R., Nowosad A. Transcripional activity of genes encoding MMPS and TIMPs in breast cancer cells treated by genistein and in normal cancer-associated fibroblasts ñ in vitro studies. Acta Pol. Pharm. Drug Res. 2014;71:1095–1102. PubMed

Farina H.G., Pomies M., Alonso D.F., Gomez D.E. Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol. Rep. 2006;16:885–891. PubMed

Piao M., Mori D., Satoh T., Sugita Y., Tokunaga O. Inhibition of endothelial cell proliferation, in vitro angiogenesis, and the down-regulation of cell adhesion-related genes by genistein. Combined with a cDNA microarray analysis. Endothelium. 2006;13:249–266. doi: 10.1080/10623320600903940. PubMed DOI

Rabiau N., Kossaï M., Braud M., Chalabi N., Satih S., Bignon Y.J., Bernard-Gallon D.J. Genistein and daidzein act on a panel of genes implicated in cell cycle and angiogenesis by polymerase chain reaction arrays in human prostate cancer cell lines. Cancer Epidemiol. 2010;34:200–206. doi: 10.1016/j.canep.2009.12.018. PubMed DOI

Li Y., Sarkar F.H. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett. 2002;186:157–164. doi: 10.1016/S0304-3835(02)00349-X. PubMed DOI

Handayani R., Rice L., Cui Y., Medrano T.A., Samedi V.G., Baker H.V., Szabo N.J., Shiverick K.T. Soy isoflavones alter expression of genes associated with cancer progression, including interleukin-8, in androgen-independent PC-3 human prostate cancer cells. J. Nutr. 2006;136:75–82. PubMed

Sarkar F.H., Li Y., Wang Z., Kong D. Cellular signaling perturbation by natural products. Cell Signal. 2009;21:1541–1547. doi: 10.1016/j.cellsig.2009.03.009. PubMed DOI PMC

Shishodia S., Aggarwal B.B. Nuclear factor-κB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat. Res. 2004;119:139–173. PubMed

Wang S.D., Chen B.C., Kao S.T., Liu C.J., Yeh C.C. Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC Complement. Altern. Med. 2014;14 doi: 10.1186/1472-6882-14-26. PubMed DOI PMC

Wang J., Eltoum I.E., Lamartiniere C.A. Genistein alters growth factor signaling in transgenic prostate model (TRAMP) Mol. Cell. Endocrinol. 2004;219:171–180. doi: 10.1016/j.mce.2003.12.018. PubMed DOI

Yu X., Zhu J., Mi M., Chen W., Pan Q., Wei M. Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med. Oncol. 2012;29:349–357. doi: 10.1007/s12032-010-9770-2. PubMed DOI

Huang X., Chen S., Xu L., Liu Y., Deb D.K., Platanias L.C., Bergan R.C. Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res. 2005;65:3470–3478. PubMed

Xu L., Bergan R.C. Genistein inhibits matrix metalloproteinase type 2 activation and prostate cancer cell invasion by blocking the transforming growth factor β-mediated activation of mitogen-activated protein kinase-activated protein kinase 2–27-kDa heat shock protein pathway. Mol. Pharmacol. 2006;70:869–877. doi: 10.1124/mol.106.023861. PubMed DOI

Chang W.S., Liao C.H., Miao C.E., Wu H.C., Hou L.L., Hsiao C.L., Ji H.X., Tsai C.W., Bau D.T. The role of functional polymorphisms of cyclooxygenase 2 in renal cell carcinoma. Anticancer Res. 2014;34:5481–5486. PubMed

Kisková T., Jendželovský R., Rentsen E., Maier-Salamon A., Kokošová N., Papčová Z., Mikeš J., Orendáš P., Bojková B., Kubatka P., et al. Resveratrol enhances the chemopreventive effect of celecoxib in chemically induced breast cancer in rats. Eur. J. Cancer Prev. 2014;23:506–513. doi: 10.1097/CEJ.0000000000000083. PubMed DOI

Iñiguez M.A., Rodríguez A., Volpert O.V., Fresno M., Redondo J.M. Cyclooxygenase-2: A therapeutic target in angiogenesis. Trends Mol. Med. 2003;9:73–78. doi: 10.1016/S1471-4914(02)00011-4. PubMed DOI

Salvado M.D., Alfranca A., Haeggström J.Z., Redondo J.M. Prostanoids in tumor angiogenesis: Therapeutic intervention beyond COX-2. Trends Mol. Med. 2012;18:233–243. doi: 10.1016/j.molmed.2012.02.002. PubMed DOI

Toomey D.P., Murphy J.F., Conlon K.C. COX-2, VEGF and tumour angiogenesis. Surgeon. 2009;7:174–180. doi: 10.1016/S1479-666X(09)80042-5. PubMed DOI

Majima M., Hayashi I., Muramatsu M., Katada J., Yamashina S., Katori M. Cyclo-oxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Br. J. Pharmacol. 2000;130:641–649. doi: 10.1038/sj.bjp.0703327. PubMed DOI PMC

Akarasereenont P.C., Techatraisak K., Thaworn A., Chotewuttakorn S. The expression of COX-2 in VEGF-treated endothelial cells is mediated through protein tyrosine kinase. Mediat. Inflamm. 2002;11:17–22. doi: 10.1080/09629350210311. PubMed DOI PMC

Balkwill F.R., Mantovani A. Cancer-related inflammation: Common themes and therapeutic opportunities. Semin. Cancer Biol. 2012;22:33–40. doi: 10.1016/j.semcancer.2011.12.005. PubMed DOI

Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–444. doi: 10.1038/nature07205. PubMed DOI

Candido J., Hagemann T. Cancer-related inflammation. J. Clin. Immunol. 2013;33:79–84. doi: 10.1007/s10875-012-9847-0. PubMed DOI

Taketo M.M. Cyclooxygenase-2 inhibitors in tumorigenesis (Part II) J. Natl. Cancer Inst. 1998;90:1609–1620. doi: 10.1093/jnci/90.21.1609. PubMed DOI

Masmoudi A., le Chevalier T., Sabatier L., Soria J.C. Cyclooxygenase 2 inhibitors and cancer chemoprevention. Bull. Cancer. 2004;91:77–84. PubMed

Cooper K., Squires H., Carroll C., Papaioannou D., Booth A., Logan R.F., Maguire C., Hind D., Tappenden P. Chemoprevention of colorectal cancer: Systematic review and economic evaluation. Health Technol. Assess. 2010;14:1–206. doi: 10.3310/hta14320. PubMed DOI

Hwang J.T., Lee Y.K., Shin J.I., Park O.J. Anti-inflammatory and anticarcinogenic effect of genistein alone or in combination with capsaicin in TPA-treated rat mammary glands or mammary cancer cell line. Ann. N. Y. Acad. Sci. 2009;1171:415–420. doi: 10.1111/j.1749-6632.2009.04696.x. PubMed DOI

Chung M.H., Kim D.H., Na H.K., Kim J.H., Kim H.N., Haegeman G., Surh Y.J. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/Rel in human mammary epithelial cells. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2014;768:74–83. doi: 10.1016/j.mrfmmm.2014.04.003. PubMed DOI

Li Y.S., Wu L.P., Li K.H., Liu Y.P., Xiang R., Zhang S.B., Zhu L.Y., Zhang L.Y. Involvement of nuclear factor κB (NF-κB) in the downregulation of cyclooxygenase-2 (COX-2) by genistein in gastric cancer cells. J. Int. Med. Res. 2011;39:2141–2150. doi: 10.1177/147323001103900610. PubMed DOI

Khan A.Q., Khan R., Rehman M.U., Lateef A., Tahir M., Ali F., Sultana S. Soy isoflavones (daidzein & genistein) inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cutaneous inflammation via modulation of COX-2 and NF-κB in Swiss albino mice. Toxicology. 2012;302:266–274. doi: 10.1016/j.tox.2012.08.008. PubMed DOI

Polverini P.J., Leibovich S.J. Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab. Investig. 1984;51:635–642. PubMed

Solinas G., Germano G., Mantovani A., Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukoc. Biol. 2009;86:1065–1073. doi: 10.1189/jlb.0609385. PubMed DOI

Chanmee T., Ontong P., Konno K., Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6:1670–1690. doi: 10.3390/cancers6031670. PubMed DOI PMC

Chen X., Zhang L., Zhang I.Y., Liang J., Wang H., Ouyang M., Wu S., da Fonseca A.C., Weng L., Yamamoto Y., et al. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res. 2014;74:7285–7297. doi: 10.1158/0008-5472.CAN-14-1240. PubMed DOI PMC

Bingle L., Lewis C.E., Corke K.P., Reed M.W., Brown N.J. Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br. J. Cancer. 2006;94:101–107. doi: 10.1038/sj.bjc.6602901. PubMed DOI PMC

Joseph I.B., Isaacs J.T. Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J. Natl. Cancer Inst. 1998;90:1648–1653. doi: 10.1093/jnci/90.21.1648. PubMed DOI

Lee S.H., Lee J., Jung M.H., Lee Y.M. Glyceollins, a novel class of soy phytoalexins, inhibit angiogenesis by blocking the VEGF and bFGF signaling pathways. Mol. Nutr. Food Res. 2013;57:225–234. doi: 10.1002/mnfr.201200489. PubMed DOI

Lee S.H., Jee J.G., Bae J.S., Liu K.H., Lee Y.M. A group of novel HIF-1α inhibitors, Glyceollins, Blocks HIF-1α Synthesis and Decreases Its Stability via Inhibition of the PI3K/AKT/mTOR Pathway and Hsp90 Binding. J. Cell. Physiol. 2015;230:853–862. doi: 10.1002/jcp.24813. PubMed DOI

Kim H.J., Sung M.K., Kim J.S. Anti-inflammatory effects of glyceollins derived from soybean by elicitation with Aspergillus sojae. Inflamm. Res. 2011;60:909–917. doi: 10.1007/s00011-011-0351-4. PubMed DOI

Gabius H.J., André S., Jiménez-Barbero J., Romero A., Solís D. From lectin structure to functional glycomics: Principles of the sugar code. Trends Biochem. Sci. 2011;36:298–313. doi: 10.1016/j.tibs.2011.01.005. PubMed DOI

Gabius H.J., Siebert H.C., André S., Jiménez-Barbero J., Rüdiger H. Chemical biology of the sugar code. Chem. Biol. Chem. 2004;5:740–764. doi: 10.1002/cbic.200300753. PubMed DOI

Dvořánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.J., Sykova E., et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI

Klíma J., Lacina L., Dvoránková B., Herrmann D., Carnwath J.W., Niemann H., Kaltner H., André S., Motlík J., Gabius H.J., et al. Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration. Physiol. Res. 2009;58:873–884. PubMed

Smetana K., Jr., Szabo P., Gal P., André S., Gabius H.J., Kodet O., Dvořánková B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol. Histopathol. 2015;30:293–309. PubMed

Dalotto-Moreno T., Croci D.O., Cerliani J.P., Martinez-Allo V.C., Dergan-Dylon S., Méndez-Huergo S.P., Stupirski J.C., Mazal D., Osinaga E., Toscano M.A., et al. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res. 2013;73:1107–1117. doi: 10.1158/0008-5472.CAN-12-2418. PubMed DOI

Ito K., Stannard K., Gabutero E., Clark A.M., Neo S.Y., Onturk S., Blanchard H., Ralph S.J. Galectin-1 as a potent target for cancer therapy: Role in the tumor microenvironment. Cancer Metastasis Rev. 2012;31:763–778. doi: 10.1007/s10555-012-9388-2. PubMed DOI

Hsieh S.H., Ying N.W., Wu M.H., Chiang W.F., Hsu C.L., Wong T.Y., Jin Y.T., Hong T.M., Chen Y.L. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008;27:3746–3753. doi: 10.1038/sj.onc.1211029. PubMed DOI

Moisa A., Fritz P., Eck A., Wehner H.D., Mürdter T., Simon W., Gabius H.J. Growth/adhesion-regulatory tissue lectin galectin-3: Stromal presence but not cytoplasmic/nuclear expression in tumor cells as a negative prognostic factor in breast cancer. Anticancer Res. 2007;27:2131–2139. PubMed

Rêgo M.J., da Silva Filho A.F., Cordeiro M.F., Santos P.B., Beltrão E.I. The glycomic profile of invasive ductal carcinoma of the breast is altered in patients with hypoxic regions: Implications for tumor behavior. Folia Histochem. Cytobiol. 2014;52:96–103. doi: 10.5603/FHC.2014.0017. PubMed DOI

Markowska A., Liu F.T., Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J. Exp. Med. 2010;207:1981–1993. doi: 10.1084/jem.20090121. PubMed DOI PMC

Shon Y.H., Park S.D., Nam K.S. Effective chemopreventive activity of genistein against human breast cancer cells. J. Biochem. Mol. Biol. 2006;39:448–451. doi: 10.5483/BMBRep.2006.39.4.448. PubMed DOI

Jung E.J., Moon H.G., Cho B.I., Jeong C.Y., Joo Y.T., Lee Y.J., Hong S.C., Choi S.K., Ha W.S., Kim J.W., et al. Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int. J. Cancer. 2007;120:2331–2338. doi: 10.1002/ijc.22434. PubMed DOI

Fuchs D., Vafeiadou K., Hall W.L., Daniel H., Williams C.M., Schroot J.H., Wenzel U. Proteomic biomarkers of peripheral blood mononuclear cells obtained from postmenopausal women undergoing an intervention with soy isoflavones. Am. J. Clin. Nutr. 2007;86:1369–1375. PubMed

Santen R.J., Song R.X., Zhang Z., Kumar R., Jeng M.H., Masamura A., Lawrence J., Jr., Berstein L., Yue W. Long-term estradiol deprivation in breast cancer cells up-regulates growth factor signaling and enhances estrogen sensitivity. Endocr. Relat. Cancer. 2005;12:61–73. doi: 10.1677/erc.1.01018. PubMed DOI

Lin H.M., Moon B.K., Yu F., Kim H.R. Galectin-3 mediates genistein-induced G2/M arrest and inhibits apoptosis. Carcinogenesis. 2000;21:1941–1945. doi: 10.1093/carcin/21.11.1941. PubMed DOI

Shimura T., Takenaka Y., Fukumori T., Tsutsumi S., Okada K., Hogan V., Kikuchi A., Kuwano H., Raz A. Implication of galectin-3 in Wnt signaling. Cancer Res. 2005;65:3535–3537. doi: 10.1158/0008-5472.CAN-05-0104. PubMed DOI

Wang H., Charles P.C., Wu Y., Ren R., Pi X., Moser M., Barshishat-Kupper M., Rubin J.S., Perou C., Bautch V., et al. Gene expression profile signatures indicate a role for Wnt signaling in endothelial commitment from embryonic stem cells. Circ. Res. 2006;98:1331–1339. doi: 10.1161/01.RES.0000220650.26555.1d. PubMed DOI

Andrade J.E., Ju Y.H., Baker C., Doerge D.R., Helferich W.G. Long-term exposure to dietary sources of genistein induces estrogen-independence in the human breast cancer (MCF-7) xenograft model. Mol. Nutr. Food Res. 2014 doi: 10.1002/mnfr.201300780. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Molecular Changes Underlying Genistein Treatment of Wound Healing: A Review

. 2021 May 17 ; 43 (1) : 127-141. [epub] 20210517

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...