Soy and breast cancer: focus on angiogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26006245
PubMed Central
PMC4463727
DOI
10.3390/ijms160511728
PII: ijms160511728
Knihovny.cz E-zdroje
- Klíčová slova
- angiogenesis, breast cancer, galectins, genistein, soy,
- MeSH
- genistein chemie farmakologie terapeutické užití MeSH
- Glycine max chemie MeSH
- inhibitory angiogeneze chemie farmakologie terapeutické užití MeSH
- isoflavony chemie farmakologie terapeutické užití MeSH
- lidé MeSH
- nádory prsu krevní zásobení farmakoterapie metabolismus patologie MeSH
- patologická angiogeneze farmakoterapie metabolismus patologie MeSH
- prsy krevní zásobení účinky léků metabolismus patologie MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- genistein MeSH
- inhibitory angiogeneze MeSH
- isoflavony MeSH
Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK), etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms.
Zobrazit více v PubMed
DeSantis C., Ma J., Bryan L., Jemal A. Breast cancer statistics, 2013. CA Cancer J. Clin. 2014;64:52–62. doi: 10.3322/caac.21203. PubMed DOI
Xie Q., Chen M.L., Qin Y., Zhang Q.Y., Xu H.X., Zhou Y., Mi M.T., Zhu J.D. Isoflavone consumption and risk of breast cancer: A dose-response meta-analysis of observational studies. Asia Pac. J. Clin. Nutr. 2013;22:118–127. PubMed
Shimizu H., Ross R.K., Bernstein L., Yatani R., Henderson B.E., Mack T.M. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles Country. Br. J. Cancer. 1991;63:963–966. doi: 10.1038/bjc.1991.210. PubMed DOI PMC
Wu A.H., Ziegler R.G., Horn-Ross P.L., Nomura A.M., West D.W., Kolonel L.N., Rosenthal J.F., Hoover R.N., Pike M.C. Tofu and risk of breast cancer in Asian-Americans. Cancer Epidemiol. Biomark. Prev. 1996;5:901–906. PubMed
Korde L.A., Wu A.H., Fears T., Nomura A.M., West D.W., Kolonel L.N., Pike M.C., Hoover R.N., Ziegler R.G. Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol. Biomark. Prev. 2009;18:1050–1059. doi: 10.1158/1055-9965.EPI-08-0405. PubMed DOI
Shu X.O., Zheng Y., Cai H., Gu K., Chen Z., Zheng W., Lu W. Food intake and breast cancer survival. JAMA. 2009;302:2437–2443. doi: 10.1001/jama.2009.1783. PubMed DOI PMC
Messina M., Nagata C., Wu A.H. Estimated Asian adult soy protein and isoflavone intakes. Nutr. Cancer. 2006;55:1–12. doi: 10.1207/s15327914nc5501_1. PubMed DOI
Horn-Ross P.L., John E.M., Lee M., Stewart S.L., Koo J., Sakoda L.C., Shiau A.C., Goldstein J., Davis P., Perez-Stable E.J. Phytoestrogen consumption and breast cancer risk in a multiethnic population: The Bay Area Breast Cancer Study. Am. J. Epidemiol. 2001;154:434–441. doi: 10.1093/aje/154.5.434. PubMed DOI
Lee H.P., Gourley L., Duffy S.W., Esteve J., Lee J., Day N.E. Dietary effects on breast-cancer risk in Singapore. Lancet. 1991;337:1197–1200. doi: 10.1016/0140-6736(91)92867-2. PubMed DOI
Wu A.H., Yu M.C., Tseng C.C., Pike M.C. Epidemiology of soy exposures and breast cancer risk. Br. J. Cancer. 2008;98:9–14. doi: 10.1038/sj.bjc.6604145. PubMed DOI PMC
Liu X.O., Huang Y.B., Gao Y., Chen C., Yan Y., Dai H.J., Song F.J., Wang Y.G., Wang P.S., Chen K.X. Association between dietary factors and breast cancer risk among Chinese females: Systematic review and meta-analysis. Asian Pac. J. Cancer Prev. 2014;15:1291–1298. doi: 10.7314/APJCP.2014.15.3.1291. PubMed DOI
Wu Y.C., Zheng D., Sun J.J., Zou Z.K., Ma Z.L. Meta-analysis of studies on breast cancer risk and diet in Chinese women. Int. J. Clin. Exp. Med. 2015;8:73–85. PubMed PMC
Zhu Y.Y., Zhou L., Jiao S.C., Xu L.Z. Relationship between soy food intake and breast cancer in China. Asian Pac. J. Cancer Prev. 2011;12:2837–2840. PubMed
Dong J.Y., Qin L.Q. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: A meta-analysis of prospective studies. Breast Cancer Res. Treat. 2011;125:315–323. doi: 10.1007/s10549-010-1270-8. PubMed DOI
Chan H.Y., Leung L.K. A potential protective mechanism of soya isoflavones against 7,12-dimethylbenz[a]anthracene tumour initiation. Br. J. Nutr. 2003;90:457–465. doi: 10.1079/BJN2003913. PubMed DOI
Taylor C.K., Levy R.M., Elliott J.C., Burnett B.P. The effect of genistein aglycone on cancer and cancer risk: A review of in vitro, preclinical, and clinical studies. Nutr. Rev. 2009;67:398–415. doi: 10.1111/j.1753-4887.2009.00213.x. PubMed DOI
Valeri A., Fiorenzani P., Rossi R., Aloisi A.M., Valoti M., Pessina F. The soy phytoestrogens genistein and daidzein as neuroprotective agents against anoxia-glucopenia and reperfusion damage in rat urinary bladder. Pharmacol. Res. 2012;66:309–316. doi: 10.1016/j.phrs.2012.06.007. PubMed DOI
Ko K.P., Kim C.S., Ahn Y., Park S.J., Kim Y.J., Park J.K., Lim Y.K., Yoo K.Y., Kim S.S. Plasma isoflavone concentration is associated with decreased risk of type 2 diabetes in Korean women but not men: Results from the Korean Genome and Epidemiology Study. Diabetologia. 2015;58:726–735. doi: 10.1007/s00125-014-3463-x. PubMed DOI
Constantinou A.I., Lantvit D., Hawthorne M., Xu X., van Breemen R.B., Pezzuto J.M. Chemopreventive effects of soy protein and purified soy isoflavones on DMBA-induced mammary tumors in female Sprague-Dawley rats. Nutr. Cancer. 2001;41:75–81. doi: 10.1080/01635581.2001.9680615. PubMed DOI
Horie S. Chemoprevention of prostate cancer: Soy isoflavones and curcumin. Korean J. Urol. 2012;53:665–672. doi: 10.4111/kju.2012.53.10.665. PubMed DOI PMC
Wada K., Nakamura K., Tamai Y., Tsuji M., Kawachi T., Hori A., Takeyama N., Tanabashi S., Matsushita S., Tokimitsu N., et al. Soy isoflavone intake and breast cancer risk in Japan: From the Takayama study. Int. J. Cancer. 2013;133:952–960. doi: 10.1002/ijc.28088. PubMed DOI
Lim E., Metzger-Filho O., Winer E.P. The natural history of hormone receptor-positive breast cancer. Oncology. 2012;26:688–694. PubMed
Messina M., Hilakivi-Clarke L. Early intake appears to be the key to the proposed protective effects of soy intake against breast cancer. Nutr. Cancer. 2009;61:792–798. doi: 10.1080/01635580903285015. PubMed DOI
Dixon R.A. Phytoestrogens. Annu. Rev. Plant Biol. 2004;55:225–261. doi: 10.1146/annurev.arplant.55.031903.141729. PubMed DOI
Hsieh C.Y., Santell R.C., Haslam S.Z., Helferich W.G. Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res. 1998;58:3833–3838. PubMed
Zava D.T., Duwe G. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr. Cancer. 1997;27:31–40. doi: 10.1080/01635589709514498. PubMed DOI
Song M., Tian X., Lu M., Zhang X., Ma K., Lv Z., Wang Z., Hu Y., Xun C., Zhang Z., et al. Genistein exerts growth inhibition on human osteosarcoma MG-63 cells via PPARγ pathway. Int. J. Oncol. 2015 doi: 10.3892/ijo.2015.2829. PubMed DOI
Liu X., Ye F., Wu J., How B., Li W., Zhang D.Y. Signaling proteins and pathways affected by flavonoids in leukemia cells. Nutr. Cancer. 2015;14:1–12. doi: 10.1080/01635581.2015.1037961. PubMed DOI
Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 1997;262:5592–5595. PubMed
Mizushina Y., Shiomi K., Kuriyama I., Takahashi Y., Yoshida H. Inhibitory effects of a major soy isoflavone, genistein, on human DNA topoisomerase II activity and cancer cell proliferation. Int. J. Oncol. 2013;43:1117–1124. PubMed
Zhou N., Yan Y., Li W., Wang Y., Zheng L., Han S., Yan Y., Li Y. Genistein inhibition of topoisomerase IIα expression participated by Sp1 and Sp3 in HeLa cell. Int. J. Mol. Sci. 2009;10:3255–3268. doi: 10.3390/ijms10073255. PubMed DOI PMC
Aggarwal B.B., Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006;71:1397–1421. doi: 10.1016/j.bcp.2006.02.009. PubMed DOI
Choi E.J., Kim G.H. Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine. 2008;15:683–690. doi: 10.1016/j.phymed.2008.04.006. PubMed DOI
Choi Y.H., Zhang L., Lee W.H., Park K.Y. Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int. J. Oncol. 1998;13:391–396. PubMed
Sarkar F.H., Li Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev. 2002;21:265–280. doi: 10.1023/A:1021210910821. PubMed DOI
Li Z., Li J., Mo B., Hu C., Liu H., Qi H., Wang X., Xu J. Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol. In Vitro. 2008;22:1749–1753. doi: 10.1016/j.tiv.2008.08.001. PubMed DOI
Adams R.H., Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 2007;8:464–478. doi: 10.1038/nrm2183. PubMed DOI
Bhadada S.V., Goyal B.R., Patel M.M. Angiogenic targets for potential disorders. Fundam. Clin. Pharmacol. 2011;25:29–47. doi: 10.1111/j.1472-8206.2010.00814.x. PubMed DOI
Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–364. doi: 10.1016/S0092-8674(00)80108-7. PubMed DOI
Folkman J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971;285:1182–1186. doi: 10.1056/NEJM197108122850711. PubMed DOI
Ferrara N. VEGF as a therapeutic target in cancer. Oncology. 2005;69:11–16. doi: 10.1159/000088479. PubMed DOI
Claesson-Welsh L., Welsh M. VEGFA and tumour angiogenesis. J. Intern. Med. 2013;273:114–127. doi: 10.1111/joim.12019. PubMed DOI
Wehland M., Bauer J., Infanger M., Grimm D. Primary tumor cells, stromal cells and cancer stem cells strongly influence vessel growth in tumors. Curr. Pharm. Des. 2012;18:4244–4257. doi: 10.2174/138161212802430468. PubMed DOI
Vasudev N.S., Reynolds A.R. Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471–494. doi: 10.1007/s10456-014-9420-y. PubMed DOI PMC
Miller K., Wang M., Gralow J., Dickler M., Cobleigh M., Perez E.A., Shenkier T., Cella D., Davidson N.E. Paclitaxel plus bevacizumab vs. paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 2007;357:2666–2676. doi: 10.1056/NEJMoa072113. PubMed DOI
Miles D.W., Chan A., Dirix L.Y., Cortés J., Pivot X., Tomczak P., Delozier T., Sohn J.H., Provencher L., Puglisi F., et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 2010;28:3239–3247. doi: 10.1200/JCO.2008.21.6457. PubMed DOI
Robert N.J., Saleh M.N., Paul D., Generali D., Gressot L., Copur M.S., Brufsky A.M., Minton S.E., Giguere J.K., Smith J.W., 2nd, et al. Sunitinib plus paclitaxel vs. bevacizumab plus paclitaxel for first-line treatment of patients with advanced breast cancer: A phase III, randomized, open-label trial. Clin. Breast Cancer. 2011;11:82–92. doi: 10.1016/j.clbc.2011.03.005. PubMed DOI PMC
Brufsky A.M., Hurvitz S., Perez E., Swamy R., Valero V., O’Neill V., Rugo H.S. RIBBON-2: A randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 2011;29:4286–4293. doi: 10.1200/JCO.2010.34.1255. PubMed DOI
Grothey A., Flick E.D., Cohn A.L., Bekaii-Saab T.S., Bendell J.C., Kozloff M., Roach N., Mun Y., Fish S., Hurwitz H.I. Bevacizumab exposure beyond first disease progression in patients with metastatic colorectal cancer: Analyses of the ARIES observational cohort study. Pharmacoepidemiol. Drug Saf. 2014;23:726–734. doi: 10.1002/pds.3633. PubMed DOI
Grothey A., Sugrue M.M., Purdie D.M., Dong W., Sargent D., Hedrick E., Kozloff M. Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer: Results from a large observational cohort study (BRiTE) J. Clin. Oncol. 2008;26:5326–5334. doi: 10.1200/JCO.2008.16.3212. PubMed DOI
Von Minckwitz G., Puglisi F., Cortes J., Vrdoljak E., Marschner N., Zielinski C., Villanueva C., Romieu G., Lang I., Ciruelos E., et al. Bevacizumab plus chemotherapy vs. chemotherapy alone as second-line treatment for patients with HER2-negative locally recurrent or metastatic breast cancer after first-line treatment with bevacizumab plus chemotherapy (TANIA): An open-label, randomised phase 3 trial. Lancet Oncol. 2014;15:1269–1278. doi: 10.1016/S1470-2045(14)70439-5. PubMed DOI
Gligorov J., Doval D., Bines J., Alba E., Cortes P., Pierga J.Y., Gupta V., Costa R., Srock S., de Ducla S., et al. Maintenance capecitabine and bevacizumab vs. bevacizumab alone after initial first-line bevacizumab and docetaxel for patients with HER2-negative metastatic breast cancer (IMELDA): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1351–1360. doi: 10.1016/S1470-2045(14)70444-9. PubMed DOI
Robert N.J., Diéras V., Glaspy J., Brufsky A.M., Bondarenko I., Lipatov O.N., Perez E.A., Yardley D.A., Chan S.Y., Zhou X., et al. RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol. 2011;29:1252–1260. doi: 10.1200/JCO.2010.28.0982. PubMed DOI
Bergh J., Mariani G., Cardoso F., Liljegren A., Awada A., Viganò L., Huang X., Verkh L., Kern K.A., Giorgetti C., et al. Clinical and pharmacokinetic study of sunitinib and docetaxel in women with advanced breast cancer. Breast. 2012;21:507–513. doi: 10.1016/j.breast.2012.01.012. PubMed DOI
Crown J.P., Diéras V., Staroslawska E., Yardley D.A., Bachelot T., Davidson N., Wildiers H., Fasching P.A., Capitain O., Ramos M., et al. Phase III trial of sunitinib in combination with capecitabine vs. capecitabine monotherapy for the treatment of patients with pretreated metastatic breast cancer. J. Clin. Oncol. 2013;31:2870–2878. doi: 10.1200/JCO.2012.43.3391. PubMed DOI
Sun M., Larcher A., Karakiewicz P.I. Optimal first-line and second-line treatments for metastatic renal cell carcinoma: Current evidence. Int. J. Nephrol. Renovasc. Dis. 2014;29:401–407. doi: 10.2147/IJNRD.S48496. PubMed DOI PMC
Piccart M., Hortobagyi G.N., Campone M., Pritchard K.I., Lebrun F., Ito Y., Noguchi S., Perez A., Rugo H.S., Deleu I., et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Overall survival results from BOLERO-2. Ann. Oncol. 2014;25:2357–2362. doi: 10.1093/annonc/mdu456. PubMed DOI PMC
Chen J., Yao Q., Li D., Zhang J., Wang T., Yu M., Zhou X., Huan Y., Wang J., Wang L. Neoadjuvant rh-endostatin, docetaxel and epirubicin for breast cancer: Efficacy and safety in a prospective, randomized, phase II study. BMC Cancer. 2013;21:248. doi: 10.1186/1471-2407-13-248. PubMed DOI PMC
Yang F., Zhang W., Shen Y., Guan X. Identification of dysregulated microRNAs in triple-negative breast cancer (Review) Int. J. Oncol. 2015 doi: 10.3892/ijo.2015.2821. PubMed DOI
Calixto J.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents) Braz. J. Med. Biol. Res. 2000;33:179–189. doi: 10.1590/S0100-879X2000000200004. PubMed DOI
Bear H.D., Tang G., Rastogi P., Geyer C.E., Jr., Robidoux A., Atkins J.N., Baez-Diaz L., Brufsky A.M., Mehta R.S., Fehrenbacher L., et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N. Engl. J. Med. 2012;366:310–320. doi: 10.1056/NEJMoa1111097. PubMed DOI PMC
Von Minckwitz G., Eidtmann H., Rezai M., Fasching P.A., Tesch H., Eggemann H., Schrader I., Kittel K., Hanusch C., Kreienberg R., et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N. Engl. J. Med. 2012;366:299–309. doi: 10.1056/NEJMoa1111065. PubMed DOI
Von Minckwitz G., Loibl S., Untch M., Eidtmann H., Rezai M., Fasching P.A., Tesch H., Eggemann H., Schrader I., Kittel K., et al. Survival after neoadjuvant chemotherapy with or without bevacizumab or everolimus for HER2-negative primary breast cancer (GBG 44-GeparQuinto)†. Ann. Oncol. 2014;25:2363–2372. doi: 10.1093/annonc/mdu455. PubMed DOI
Cameron D., Brown J., Dent R., Jackisch C., Mackey J., Pivot X., Steger G.G., Suter T.M., Toi M., Parmar M., et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): Primary results of a randomised, phase 3 trial. Lancet Oncol. 2013;14:933–942. doi: 10.1016/S1470-2045(13)70335-8. PubMed DOI
Gianni L., Romieu G.H., Lichinitser M., Serrano S.V., Mansutti M., Pivot X., Mariani P., Andre F., Chan A., Lipatov O., et al. AVEREL: A randomized phase III Trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J. Clin. Oncol. 2013;31:1719–1725. doi: 10.1200/JCO.2012.44.7912. PubMed DOI
Baselga J., Costa F., Gomez H., Hudis C.A., Rapoport B., Roche H., Schwartzberg L.S., Petrenciuc O., Shan M., Gradishar W.J. A phase 3 trial comparing capecitabine in combination with Sorafenib or placebo for treatment of locally advanced or metastatic HER2-negative breast cancer (the RESILIENCE study): Study protocol for a randomized controlled trial. Trials. 2013;14:228. doi: 10.1186/1745-6215-14-228. PubMed DOI PMC
Miller K.D., Chap L.I., Holmes F.A., Cobleigh M.A., Marcom P.K., Fehrenbacher L., Dickler M., Overmoyer B.A., Reimann J.D., Sing A.P., et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J. Clin. Oncol. 2005;23:792–799. doi: 10.1200/JCO.2005.05.098. PubMed DOI
André F., O’Regan R., Ozguroglu M., Toi M., Xu B., Jerusalem G., Masuda N., Wilks S., Arena F., Isaacs C., et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15:580–591. doi: 10.1016/S1470-2045(14)70138-X. PubMed DOI
Barrios C.H., Liu M.C., Lee S.C., Vanlemmens L., Ferrero J.M., Tabei T., Pivot X., Iwata H., Aogi K., Lugo-Quintana R., et al. Phase III randomized trial of sunitinib vs. capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res. Treat. 2010;121:121–131. doi: 10.1007/s10549-010-0788-0. PubMed DOI PMC
Nishida N., Yano H., Nishida T., Kamura T., Kojiro M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006;2:213–219. doi: 10.2147/vhrm.2006.2.3.213. PubMed DOI PMC
Mojzis J., Varinska L., Mojzisova G., Kostova I., Mirossay L. Antiangiogenic effects of flavonoids and chalcones. Pharmacol. Res. 2008;57:259–265. doi: 10.1016/j.phrs.2008.02.005. PubMed DOI
Pilátová M., Stupáková V., Varinská L., Sarisský M., Mirossay L., Mirossay A., Gál P., Kraus V., Dianisková K., Mojzis J. Effect of selected flavones on cancer and endothelial cells. Gen. Physiol. Biophys. 2010;29:134–143. doi: 10.4149/gpb_2010_02_134. PubMed DOI
Kumazawa S., Kubota S., Yamamoto H., Okamura N., Sugiyamab Y., Kobayashia H., Nakanishi M., Ohta T. Antiangiogenic activity of flavonoids from Melia azedarach. Nat. Prod. Commun. 2013;8:1719–1720. PubMed
Zhang M., Liu C., Zhang Z., Yang S., Zhang B., Yin L., Swarts S., Vidyasagar S., Zhang L., Okunieff P. A new flavonoid regulates angiogenesis and reactive oxygen species production. Adv. Exp. Med. Biol. 2014;812:149–155. PubMed
Ivanova L., Varinska L., Pilatova M., Gal P., Solar P., Perjesi P., Smetana K., Jr., Ostro A., Mojzis J. Cyclic chalcone analogue KRP6 as a potent modulator of cell proliferation: An in vitro study in HUVECs. Mol. Biol. Rep. 2013;40:4571–4580. doi: 10.1007/s11033-013-2547-x. PubMed DOI
Varinska L., van Wijhe M., Belleri M., Mitola S., Perjesi P., Presta M., Koolwijk P., Ivanova L., Mojzis J. Anti-angiogenic activity of the flavonoid precursor 4-hydroxychalcone. Eur. J. Pharmacol. 2012;691:125–133. doi: 10.1016/j.ejphar.2012.06.017. PubMed DOI
Pilatova M., Varinska L., Perjesi P., Sarissky M., Mirossay L., Solar P., Ostro A., Mojzis J. In vitro antiproliferative and antiangiogenic effects of synthetic chalcone analogues. Toxicol. In Vitro. 2010;24:1347–1355. doi: 10.1016/j.tiv.2010.04.013. PubMed DOI
Mojzis J., Sarisský M., Pilátová M., Voharová V., Varinská L., Mojzisová G., Ostro A., Urdzík P., Dankovcik R., Mirossay L. In vitro antiproliferative and antiangiogenic effects of Flavin7. Physiol. Res. 2008;57:413–420. PubMed
Fotsis T., Pepper M., Adlercreutz H., Fleischmann G., Hase T., Montesano R., Schweigerer L. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc. Natl. Acad. Sci. USA. 1993;90:2690–2694. doi: 10.1073/pnas.90.7.2690. PubMed DOI PMC
Fotsis T., Pepper M., Adlercreutz H., Hase T., Montesano R., Schweigerer L. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J. Nutr. 1995;125:790–797. PubMed
Nagaraju G.P., Zafar S.F., el-Rayes B.F. Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutr. Rev. 2013;71:562–572. doi: 10.1111/nure.12044. PubMed DOI
Gacche R.N., Meshram R.J. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim. Biophys. Acta. 2014;1846:161–179. PubMed
Guo Y., Wang S., Hoot D.R., Clinton S.K. Suppression of VEGF-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones. J. Nutr. Biochem. 2007;18:408–417. doi: 10.1016/j.jnutbio.2006.08.006. PubMed DOI
Levy A.P., Levy N.S., Goldberg M.A. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J. Biol. Chem. 1996;271:2746–2753. doi: 10.1074/jbc.271.5.2746. PubMed DOI
Yu X., Mi M., Zhu J. Genistein inhibits the expression of vascular endothelial growth factor in MDA-MB-453 breast cancer cells. U.S. Chin. J. Lymphol. Oncol. 2008;7:8–13.
Su S.J., Yeh T.M., Chuang W.J., Ho C.L., Chang K.L., Cheng H.L., Liu H.S., Cheng H.L., Hsu P.Y., Chow N.H. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem. Pharmacol. 2005;69:307–318. doi: 10.1016/j.bcp.2004.09.025. PubMed DOI
Büchler P., Reber H.A., Büchler M.W., Friess H., Lavey R.S., Hines O.J. Antiangiogenic activity of genistein in pancreatic carcinoma cells is mediated by the inhibition of hypoxia-inducible factor-1 and the down-regulation of VEGF gene expression. Cancer. 2004;100:201–210. doi: 10.1002/cncr.11873. PubMed DOI
Aditya N.P., Shim M., Yang H., Lee Y.J., Ko S. Antiangiogenic effect of combined treatment with curcumin and genistein on human prostate cancer cell line. J. Funct. Food. 2014;8:204–213. doi: 10.1016/j.jff.2014.03.014. DOI
Ambra R., Rimbach G., de Pascual Teresa S., Fuchs D., Wenzel U., Daniel H., Virgili F. Genistein affects the expression of genes involved in blood pressure regulation and angiogenesis in primary human endothelial cells. Nutr. Metab. Cardiovasc. Dis. 2006;16:35–43. doi: 10.1016/j.numecd.2005.03.003. PubMed DOI
Zhou J.R., Gugger E.T., Tanaka T., Guo Y., Blackburn G.L., Clinton S.K. Soybean phytochemicals inhibit the growth of transplantable human prostate carcinoma and tumor angiogenesis in mice. J. Nutr. 1999;129:1628–1635. PubMed
Bakkiyanathan A., Joseph A.M., Tharani L., Malathi R. Genistein, the phytoestrogen induces heart-and-soul (has) phenotypes in zebrafish embryo. J. Dev. Biol. Tissue Eng. 2010;2:18–22.
Mukhopadhyay S., Ballard B.R., Mukherjee S., Kabir S.M., Das S.K. Beneficial effects of soy protein in the initiation and progression against dimethylbenz(a) anthracene-induced breast tumors in female rats. Mol. Cell. Biochem. 2006;290:169–176. doi: 10.1007/s11010-006-9184-9. PubMed DOI
Hennet T. Diseases of glycosylation. In: Gabius H.-J., editor. The Sugar Code: Fundamentals of Glycosciences. Wiley-VCH; Weinheim, Germany: 2009. pp. 365–383.
Honke K., Taniguchi N. Animal models to delineate glycan functionality. In: Gabius H.-J., editor. The Sugar Code. Fundamentals of Glycosciences. Wiley-VCH; Weinheim, Germany: 2009. pp. 385–401.
Nyberg P., Salo T., Kalluri R. Tumor microenvironment and angiogenesis. Front. Biosci. 2008;13:6537–6553. doi: 10.2741/3173. PubMed DOI
Rabbani S.A., Mazar A.P. The role of the plasminogen activation system in angiogenesis and metastasis. Surg. Oncol. Clin. N. Am. 2001;10:393–415. PubMed
Rundhaug J.E. Matrix metalloproteinases and angiogenesis. J. Cell Mol. Med. 2005;9:267–285. doi: 10.1111/j.1582-4934.2005.tb00355.x. PubMed DOI PMC
Hadler-Olsen E., Winberg J.O., Uhlin-Hansen L. Matrix metalloproteinases in cancer: Their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 2013;34:2041–2051. doi: 10.1007/s13277-013-0842-8. PubMed DOI
Kim M.H. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J. Cell. Biochem. 2003;89:529–538. doi: 10.1002/jcb.10543. PubMed DOI
Kumi-Diaka J.K., Hassanhi M., Merchant K., Horman V. Influence of genistein isoflavone on matrix metalloproteinase-2 expression in prostate cancer cells. J. Med. Food. 2006;9:491–497. doi: 10.1089/jmf.2006.9.491. PubMed DOI
Latocha M., Płonka J., Kuśmierz D., Jurzak M., Polaniak R., Nowosad A. Transcripional activity of genes encoding MMPS and TIMPs in breast cancer cells treated by genistein and in normal cancer-associated fibroblasts ñ in vitro studies. Acta Pol. Pharm. Drug Res. 2014;71:1095–1102. PubMed
Farina H.G., Pomies M., Alonso D.F., Gomez D.E. Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol. Rep. 2006;16:885–891. PubMed
Piao M., Mori D., Satoh T., Sugita Y., Tokunaga O. Inhibition of endothelial cell proliferation, in vitro angiogenesis, and the down-regulation of cell adhesion-related genes by genistein. Combined with a cDNA microarray analysis. Endothelium. 2006;13:249–266. doi: 10.1080/10623320600903940. PubMed DOI
Rabiau N., Kossaï M., Braud M., Chalabi N., Satih S., Bignon Y.J., Bernard-Gallon D.J. Genistein and daidzein act on a panel of genes implicated in cell cycle and angiogenesis by polymerase chain reaction arrays in human prostate cancer cell lines. Cancer Epidemiol. 2010;34:200–206. doi: 10.1016/j.canep.2009.12.018. PubMed DOI
Li Y., Sarkar F.H. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett. 2002;186:157–164. doi: 10.1016/S0304-3835(02)00349-X. PubMed DOI
Handayani R., Rice L., Cui Y., Medrano T.A., Samedi V.G., Baker H.V., Szabo N.J., Shiverick K.T. Soy isoflavones alter expression of genes associated with cancer progression, including interleukin-8, in androgen-independent PC-3 human prostate cancer cells. J. Nutr. 2006;136:75–82. PubMed
Sarkar F.H., Li Y., Wang Z., Kong D. Cellular signaling perturbation by natural products. Cell Signal. 2009;21:1541–1547. doi: 10.1016/j.cellsig.2009.03.009. PubMed DOI PMC
Shishodia S., Aggarwal B.B. Nuclear factor-κB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat. Res. 2004;119:139–173. PubMed
Wang S.D., Chen B.C., Kao S.T., Liu C.J., Yeh C.C. Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC Complement. Altern. Med. 2014;14 doi: 10.1186/1472-6882-14-26. PubMed DOI PMC
Wang J., Eltoum I.E., Lamartiniere C.A. Genistein alters growth factor signaling in transgenic prostate model (TRAMP) Mol. Cell. Endocrinol. 2004;219:171–180. doi: 10.1016/j.mce.2003.12.018. PubMed DOI
Yu X., Zhu J., Mi M., Chen W., Pan Q., Wei M. Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med. Oncol. 2012;29:349–357. doi: 10.1007/s12032-010-9770-2. PubMed DOI
Huang X., Chen S., Xu L., Liu Y., Deb D.K., Platanias L.C., Bergan R.C. Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res. 2005;65:3470–3478. PubMed
Xu L., Bergan R.C. Genistein inhibits matrix metalloproteinase type 2 activation and prostate cancer cell invasion by blocking the transforming growth factor β-mediated activation of mitogen-activated protein kinase-activated protein kinase 2–27-kDa heat shock protein pathway. Mol. Pharmacol. 2006;70:869–877. doi: 10.1124/mol.106.023861. PubMed DOI
Chang W.S., Liao C.H., Miao C.E., Wu H.C., Hou L.L., Hsiao C.L., Ji H.X., Tsai C.W., Bau D.T. The role of functional polymorphisms of cyclooxygenase 2 in renal cell carcinoma. Anticancer Res. 2014;34:5481–5486. PubMed
Kisková T., Jendželovský R., Rentsen E., Maier-Salamon A., Kokošová N., Papčová Z., Mikeš J., Orendáš P., Bojková B., Kubatka P., et al. Resveratrol enhances the chemopreventive effect of celecoxib in chemically induced breast cancer in rats. Eur. J. Cancer Prev. 2014;23:506–513. doi: 10.1097/CEJ.0000000000000083. PubMed DOI
Iñiguez M.A., Rodríguez A., Volpert O.V., Fresno M., Redondo J.M. Cyclooxygenase-2: A therapeutic target in angiogenesis. Trends Mol. Med. 2003;9:73–78. doi: 10.1016/S1471-4914(02)00011-4. PubMed DOI
Salvado M.D., Alfranca A., Haeggström J.Z., Redondo J.M. Prostanoids in tumor angiogenesis: Therapeutic intervention beyond COX-2. Trends Mol. Med. 2012;18:233–243. doi: 10.1016/j.molmed.2012.02.002. PubMed DOI
Toomey D.P., Murphy J.F., Conlon K.C. COX-2, VEGF and tumour angiogenesis. Surgeon. 2009;7:174–180. doi: 10.1016/S1479-666X(09)80042-5. PubMed DOI
Majima M., Hayashi I., Muramatsu M., Katada J., Yamashina S., Katori M. Cyclo-oxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Br. J. Pharmacol. 2000;130:641–649. doi: 10.1038/sj.bjp.0703327. PubMed DOI PMC
Akarasereenont P.C., Techatraisak K., Thaworn A., Chotewuttakorn S. The expression of COX-2 in VEGF-treated endothelial cells is mediated through protein tyrosine kinase. Mediat. Inflamm. 2002;11:17–22. doi: 10.1080/09629350210311. PubMed DOI PMC
Balkwill F.R., Mantovani A. Cancer-related inflammation: Common themes and therapeutic opportunities. Semin. Cancer Biol. 2012;22:33–40. doi: 10.1016/j.semcancer.2011.12.005. PubMed DOI
Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–444. doi: 10.1038/nature07205. PubMed DOI
Candido J., Hagemann T. Cancer-related inflammation. J. Clin. Immunol. 2013;33:79–84. doi: 10.1007/s10875-012-9847-0. PubMed DOI
Taketo M.M. Cyclooxygenase-2 inhibitors in tumorigenesis (Part II) J. Natl. Cancer Inst. 1998;90:1609–1620. doi: 10.1093/jnci/90.21.1609. PubMed DOI
Masmoudi A., le Chevalier T., Sabatier L., Soria J.C. Cyclooxygenase 2 inhibitors and cancer chemoprevention. Bull. Cancer. 2004;91:77–84. PubMed
Cooper K., Squires H., Carroll C., Papaioannou D., Booth A., Logan R.F., Maguire C., Hind D., Tappenden P. Chemoprevention of colorectal cancer: Systematic review and economic evaluation. Health Technol. Assess. 2010;14:1–206. doi: 10.3310/hta14320. PubMed DOI
Hwang J.T., Lee Y.K., Shin J.I., Park O.J. Anti-inflammatory and anticarcinogenic effect of genistein alone or in combination with capsaicin in TPA-treated rat mammary glands or mammary cancer cell line. Ann. N. Y. Acad. Sci. 2009;1171:415–420. doi: 10.1111/j.1749-6632.2009.04696.x. PubMed DOI
Chung M.H., Kim D.H., Na H.K., Kim J.H., Kim H.N., Haegeman G., Surh Y.J. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/Rel in human mammary epithelial cells. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2014;768:74–83. doi: 10.1016/j.mrfmmm.2014.04.003. PubMed DOI
Li Y.S., Wu L.P., Li K.H., Liu Y.P., Xiang R., Zhang S.B., Zhu L.Y., Zhang L.Y. Involvement of nuclear factor κB (NF-κB) in the downregulation of cyclooxygenase-2 (COX-2) by genistein in gastric cancer cells. J. Int. Med. Res. 2011;39:2141–2150. doi: 10.1177/147323001103900610. PubMed DOI
Khan A.Q., Khan R., Rehman M.U., Lateef A., Tahir M., Ali F., Sultana S. Soy isoflavones (daidzein & genistein) inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cutaneous inflammation via modulation of COX-2 and NF-κB in Swiss albino mice. Toxicology. 2012;302:266–274. doi: 10.1016/j.tox.2012.08.008. PubMed DOI
Polverini P.J., Leibovich S.J. Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab. Investig. 1984;51:635–642. PubMed
Solinas G., Germano G., Mantovani A., Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukoc. Biol. 2009;86:1065–1073. doi: 10.1189/jlb.0609385. PubMed DOI
Chanmee T., Ontong P., Konno K., Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6:1670–1690. doi: 10.3390/cancers6031670. PubMed DOI PMC
Chen X., Zhang L., Zhang I.Y., Liang J., Wang H., Ouyang M., Wu S., da Fonseca A.C., Weng L., Yamamoto Y., et al. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res. 2014;74:7285–7297. doi: 10.1158/0008-5472.CAN-14-1240. PubMed DOI PMC
Bingle L., Lewis C.E., Corke K.P., Reed M.W., Brown N.J. Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br. J. Cancer. 2006;94:101–107. doi: 10.1038/sj.bjc.6602901. PubMed DOI PMC
Joseph I.B., Isaacs J.T. Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J. Natl. Cancer Inst. 1998;90:1648–1653. doi: 10.1093/jnci/90.21.1648. PubMed DOI
Lee S.H., Lee J., Jung M.H., Lee Y.M. Glyceollins, a novel class of soy phytoalexins, inhibit angiogenesis by blocking the VEGF and bFGF signaling pathways. Mol. Nutr. Food Res. 2013;57:225–234. doi: 10.1002/mnfr.201200489. PubMed DOI
Lee S.H., Jee J.G., Bae J.S., Liu K.H., Lee Y.M. A group of novel HIF-1α inhibitors, Glyceollins, Blocks HIF-1α Synthesis and Decreases Its Stability via Inhibition of the PI3K/AKT/mTOR Pathway and Hsp90 Binding. J. Cell. Physiol. 2015;230:853–862. doi: 10.1002/jcp.24813. PubMed DOI
Kim H.J., Sung M.K., Kim J.S. Anti-inflammatory effects of glyceollins derived from soybean by elicitation with Aspergillus sojae. Inflamm. Res. 2011;60:909–917. doi: 10.1007/s00011-011-0351-4. PubMed DOI
Gabius H.J., André S., Jiménez-Barbero J., Romero A., Solís D. From lectin structure to functional glycomics: Principles of the sugar code. Trends Biochem. Sci. 2011;36:298–313. doi: 10.1016/j.tibs.2011.01.005. PubMed DOI
Gabius H.J., Siebert H.C., André S., Jiménez-Barbero J., Rüdiger H. Chemical biology of the sugar code. Chem. Biol. Chem. 2004;5:740–764. doi: 10.1002/cbic.200300753. PubMed DOI
Dvořánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.J., Sykova E., et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI
Klíma J., Lacina L., Dvoránková B., Herrmann D., Carnwath J.W., Niemann H., Kaltner H., André S., Motlík J., Gabius H.J., et al. Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration. Physiol. Res. 2009;58:873–884. PubMed
Smetana K., Jr., Szabo P., Gal P., André S., Gabius H.J., Kodet O., Dvořánková B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol. Histopathol. 2015;30:293–309. PubMed
Dalotto-Moreno T., Croci D.O., Cerliani J.P., Martinez-Allo V.C., Dergan-Dylon S., Méndez-Huergo S.P., Stupirski J.C., Mazal D., Osinaga E., Toscano M.A., et al. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res. 2013;73:1107–1117. doi: 10.1158/0008-5472.CAN-12-2418. PubMed DOI
Ito K., Stannard K., Gabutero E., Clark A.M., Neo S.Y., Onturk S., Blanchard H., Ralph S.J. Galectin-1 as a potent target for cancer therapy: Role in the tumor microenvironment. Cancer Metastasis Rev. 2012;31:763–778. doi: 10.1007/s10555-012-9388-2. PubMed DOI
Hsieh S.H., Ying N.W., Wu M.H., Chiang W.F., Hsu C.L., Wong T.Y., Jin Y.T., Hong T.M., Chen Y.L. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008;27:3746–3753. doi: 10.1038/sj.onc.1211029. PubMed DOI
Moisa A., Fritz P., Eck A., Wehner H.D., Mürdter T., Simon W., Gabius H.J. Growth/adhesion-regulatory tissue lectin galectin-3: Stromal presence but not cytoplasmic/nuclear expression in tumor cells as a negative prognostic factor in breast cancer. Anticancer Res. 2007;27:2131–2139. PubMed
Rêgo M.J., da Silva Filho A.F., Cordeiro M.F., Santos P.B., Beltrão E.I. The glycomic profile of invasive ductal carcinoma of the breast is altered in patients with hypoxic regions: Implications for tumor behavior. Folia Histochem. Cytobiol. 2014;52:96–103. doi: 10.5603/FHC.2014.0017. PubMed DOI
Markowska A., Liu F.T., Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J. Exp. Med. 2010;207:1981–1993. doi: 10.1084/jem.20090121. PubMed DOI PMC
Shon Y.H., Park S.D., Nam K.S. Effective chemopreventive activity of genistein against human breast cancer cells. J. Biochem. Mol. Biol. 2006;39:448–451. doi: 10.5483/BMBRep.2006.39.4.448. PubMed DOI
Jung E.J., Moon H.G., Cho B.I., Jeong C.Y., Joo Y.T., Lee Y.J., Hong S.C., Choi S.K., Ha W.S., Kim J.W., et al. Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int. J. Cancer. 2007;120:2331–2338. doi: 10.1002/ijc.22434. PubMed DOI
Fuchs D., Vafeiadou K., Hall W.L., Daniel H., Williams C.M., Schroot J.H., Wenzel U. Proteomic biomarkers of peripheral blood mononuclear cells obtained from postmenopausal women undergoing an intervention with soy isoflavones. Am. J. Clin. Nutr. 2007;86:1369–1375. PubMed
Santen R.J., Song R.X., Zhang Z., Kumar R., Jeng M.H., Masamura A., Lawrence J., Jr., Berstein L., Yue W. Long-term estradiol deprivation in breast cancer cells up-regulates growth factor signaling and enhances estrogen sensitivity. Endocr. Relat. Cancer. 2005;12:61–73. doi: 10.1677/erc.1.01018. PubMed DOI
Lin H.M., Moon B.K., Yu F., Kim H.R. Galectin-3 mediates genistein-induced G2/M arrest and inhibits apoptosis. Carcinogenesis. 2000;21:1941–1945. doi: 10.1093/carcin/21.11.1941. PubMed DOI
Shimura T., Takenaka Y., Fukumori T., Tsutsumi S., Okada K., Hogan V., Kikuchi A., Kuwano H., Raz A. Implication of galectin-3 in Wnt signaling. Cancer Res. 2005;65:3535–3537. doi: 10.1158/0008-5472.CAN-05-0104. PubMed DOI
Wang H., Charles P.C., Wu Y., Ren R., Pi X., Moser M., Barshishat-Kupper M., Rubin J.S., Perou C., Bautch V., et al. Gene expression profile signatures indicate a role for Wnt signaling in endothelial commitment from embryonic stem cells. Circ. Res. 2006;98:1331–1339. doi: 10.1161/01.RES.0000220650.26555.1d. PubMed DOI
Andrade J.E., Ju Y.H., Baker C., Doerge D.R., Helferich W.G. Long-term exposure to dietary sources of genistein induces estrogen-independence in the human breast cancer (MCF-7) xenograft model. Mol. Nutr. Food Res. 2014 doi: 10.1002/mnfr.201300780. PubMed DOI PMC
Molecular Changes Underlying Genistein Treatment of Wound Healing: A Review