Cognitive ability is heritable and predicts the success of an alternative mating tactic
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26041347
PubMed Central
PMC4590461
DOI
10.1098/rspb.2015.1046
PII: rspb.2015.1046
Knihovny.cz E-resources
- Keywords
- alternative mating tactics, cognition, learning, mating system, sexual selection,
- MeSH
- Cyprinidae genetics physiology MeSH
- Cognition * MeSH
- Quantitative Trait, Heritable * MeSH
- Spatial Learning * MeSH
- Reproduction MeSH
- Sexual Behavior, Animal * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The ability to attract mates, acquire resources for reproduction, and successfully outcompete rivals for fertilizations may make demands on cognitive traits--the mechanisms by which an animal acquires, processes, stores and acts upon information from its environment. Consequently, cognitive traits potentially undergo sexual selection in some mating systems. We investigated the role of cognitive traits on the reproductive performance of male rose bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative mating tactics. We quantified the learning accuracy of males and females in a spatial learning task and scored them for learning accuracy. Males were subsequently allowed to play the roles of a guarder and a sneaker in competitive mating trials, with reproductive success measured using paternity analysis. We detected a significant interaction between male mating role and learning accuracy on reproductive success, with the best-performing males in maze trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-classified breeding design, learning accuracy was demonstrated to be heritable, with significant additive maternal and paternal effects. Our results imply that male cognitive traits may undergo intra-sexual selection.
See more in PubMed
Shettleworth SJ. 2010. Cognition, evolution, and behavior, 2nd edn Oxford, UK: Oxford University Press.
Byrne RW, Bates LA. 2007. Sociality, evolution and cognition. Curr. Biol. 17, R714–R723. (10.1016/j.cub.2007.05.069) PubMed DOI
Dukas R. 2004. Evolutionary biology of animal cognition. Annu. Rev. Ecol. Syst. 35, 347–374. (10.1146/annurev.ecolsys.35.112202.130152) DOI
Thornton A, Clayton NS, Grodzinski U. 2012. Animal minds: from computation to evolution. Phil. Trans. R. Soc. B 367, 2670–2676. (10.1098/rstb.2012.0270) PubMed DOI PMC
Boogert NJ, Fawcett TW, Lefebvre L. 2011. Mate choice for cognitive traits: a review of the evidence in nonhuman vertebrates. Behav. Ecol. 22, 447–459. (10.1093/beheco/arq173) DOI
Darwin C. 1871. The descent of man. London, UK: John Murray.
Thornton A, Isden J, Madden JR. 2014. Toward wild psychometrics: linking individual cognitive differences to fitness. Behav. Ecol. 25, 1299–1301. (10.1093/beheco/aru095) DOI
Cauchard L, Boogert NJ, Lefebvre L, Dubois F, Doligez B. 2013. Problem-solvng performance is correlated with reproductive success in a wild bird population. Anim. Behav. 85, 19–26. (10.1016/j.anbehav.2012.10.005) DOI
Cole EF, Morand-Ferron J, Hinks AE, Quinn JL. 2012. Cognitive ability influences reproductive life history variation in the wild. Curr. Biol. 22, 1808–1812. (10.1016/j.cub.2012.07.051) PubMed DOI
Keagy J, Savard J-F, Borgia G. 2009. Male satin bowerbird problem-solving ability predicts mating success. Anim. Behav. 78, 809–817. (10.1016/j.anbehav.2009.07.011) DOI
Keagy J, Savard J-F, Borgia G. 2011. Complex relationship between multiple measures of cognitive ability and male mating success in satin bowerbirds, Ptilonorhynchus violaceus. Anim. Behav. 81, 1063–1070. (10.1016/j.anbehav.2011.02.018) DOI
Keagy J, Savard J-F, Borgia G. 2012. Cognitive ability and the evolution of multiple behavioral display traits. Behav. Ecol. 23, 448–456. (10.1093/beheco/arr211) DOI
Hollis B, Kawecki TJ. 2014. Male cognitive performance declines in the absence of sexual selection. Proc. R. Soc. B 281, 20132873 (10.1098/rspb.2013.2873) PubMed DOI PMC
Smith C, Reichard M, Jurajda P, Przybylski M. 2004. The reproductive ecology of the European bitterling (Rhodeus sericeus). J. Zool. Lond. 262, 107–124. (10.1017/S0952836903004497) DOI
Wootton RJ, Smith C. 2015. Reproductive biology of teleost fishes. Oxford, UK: Wiley-Blackwell.
Reichard M, Smith C, Jordan WC. 2004. Genetic evidence reveals density-dependent mediated success of alternative mating tactics in the European bitterling (Rhodeus sericeus). Mol. Ecol. 13, 1569–1578. (10.1111/j.1365-294X.2004.02151.x) PubMed DOI
Smith C, Reichard M. 2013. A sperm competition model for the European bitterling (Rhodeus amarus). Behaviour 150, 1709–1730. (10.1163/1568539X-00003116) DOI
Smith C, Pateman-Jones C, Zięba G, Przybylski M, Reichard M. 2009. Sperm depletion as a consequence of increased sperm competition risk in the European bitterling (Rhodeus amarus). Anim. Behav. 77, 1227–1233. (10.1016/j.anbehav.2009.01.027) DOI
Brown C, Braithwaite VA. 2005. Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behav. Ecol. 16, 482–487. (10.1093/beheco/ari016) DOI
Spence R, Magurran AE, Smith C. 2011. Spatial cognition in zebrafish: the role of strain and rearing environment. Anim. Cogn. 14, 607–612. (10.1007/s10071-011-0391-8) PubMed DOI
Cameron DA. 2002. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish. Vis. Neurosci. 19, 365–372. (10.1017/S0952523802192121) PubMed DOI
Raine NE, Chittka L. 2008. The correlation of learning speed and natural foraging success in bumble-bees. Proc. R. Soc. B 275, 803–808. (10.1098/rspb.2007.1652) PubMed DOI PMC
Brown C, Jones F, Braithwaite V. 2005. In situ examination of boldness–shyness traits in the tropical poeciliid, Brachyraphis episcopi. Anim. Behav. 70, 1003–1009. (10.1016/j.anbehav.2004.12.022) DOI
Spence R, Wootton RJ, Barber I, Przybylski M, Smith C. 2013. Ecological causes of morphological evolution in the three-spined stickleback. Ecol. Evol. 3, 1717–1726. (10.1002/ece3.581) PubMed DOI PMC
Casalini M, Agbali M, Reichard M, Konečná M, Bryjová A, Smith C. 2009. Male dominance, female mate choice and intersexual conflict in the rose bitterling (Rhodeus ocellatus). Evolution 63, 366–376. (10.1111/j.1558-5646.2008.00555.x) PubMed DOI
Reichard M, Smith C, Bryja J. 2008. Seasonal change in the opportunity for sexual selection. Mol. Ecol. 17, 642–651. (10.1111/j.1365-294X.2007.03602.x) PubMed DOI
Dawson DA, Burland TM, Douglas AE, Le Comber SC, Bradshaw M. 2003. Isolation of microsatellite loci in the freshwater fish, the bitterling Rhodeus sericeus (Teleostei: Cyprinidae). Mol. Ecol. Notes 3, 199–202. (10.1046/j.1471-8286.2003.00395.x) DOI
Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106. (10.1111/j.1365-294X.2007.03089.x) PubMed DOI
Lynch M, Walsh B. 1998. Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer Associates.
Agbali M, Reichard M, Bryjová A, Bryja J, Smith C. 2010. Mate choice for non-additive genetic benefits correlate with MHC dissimilarity in the rose bitterling (Rhodeus ocellatus). Evolution 64, 1683–1696. (10.1111/j.1558-5646.2010.00961.x) PubMed DOI
Yokoi K, Ohta H, Hosoya K. 2008. Sperm motility and cryopreservation of spermatozoa in freshwater gobies. J. Fish Biol. 72, 534–544. (10.1111/j.1095-8649.2007.01719.x) DOI
Ieno EN, Zuur AF. 2015. Data exploration and visualisation with R. Newburgh, UK: Highland Statistics.
R Development Core Team. 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Harrison XA. 2014. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (10.7717/peerj.616) PubMed DOI PMC
Wootton RJ. 1998. The ecology of teleost fishes, 2nd edn Dordrecht, The Netherlands: Kluwer.
Casalini M, Reichard M, Smith C. 2010. The effect of crowding and density on male mating tactics in the rose bitterling (Rhodeus ocellatus). Behaviour 147, 1035–1050. (10.1163/000579510X504879) DOI
Smith C, Warren M, Rouchet R, Reichard M. 2014. The function of multiple ejaculations in bitterling. J. Evol. Biol. 27, 1819–1829. (10.1111/jeb.12432) PubMed DOI
Smith C, Reichard M, Jurajda P. 2003. Assessment of sperm competition by bitterling (Rhodeus sericeus). Behav. Ecol. Sociobiol. 53, 206–213. (10.1007/s00265-002-0576-x) DOI
Pateman-Jones C, et al. 2011. Variation in male reproductive traits among three bitterling fishes (Acheilognathinae: Cyprinidae) in relation to mating system. Biol. J. Linn. Soc. 103, 622–632. (10.1111/j.1095-8312.2011.01648.x) DOI
Smith C, Reichard M. 2005. Females solicit sneakers to improve fertilisation success in the bitterling (Rhodeus sericeus). Proc. R. Soc. B 272, 1683–1688. (10.1098/rspb.2005.3140) PubMed DOI PMC
Smith C, Douglas A, Jurajda P. 2002. Sexual conflict, sexual selection, and sperm competition in the spawning decisions of bitterling (Rhodeus sericeus). Behav. Ecol. Sociobiol. 51, 433–439. (10.1007/s00265-002-0468-0) DOI
Davies G, et al. 2011. Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol. Psychiatr. 16, 996–1005. (10.1038/mp.2011.85) PubMed DOI PMC
Deary IJ, Penke L, Johnson W. 2010. The neuroscience of human intelligence differences. Nat. Rev. Neurosci. 11, 201–211. PubMed
Byrne RW. 2000. Evolution of primate cognition. Cogn. Sci. 24, 543–570. (10.1207/s15516709cog2403_8) DOI
Kotrschal A, et al. 2013. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171. (10.1016/j.cub.2012.11.058) PubMed DOI PMC
Reichard M, Jurajda P, Smith C. 2004. Male–male interference competition decreases spawning rate in the European bitterling (Rhodeus sericeus). Behav. Ecol. Sociobiol. 56, 34–41. (10.1007/s00265-004-0760-2) DOI
Reichard M, Ondračková M, Bryjová A, Smith C, Bryja P. 2009. Breeding resource distribution affects selection gradients on male phenotypic traits: experimental study on lifetime reproductive success in the bitterling fish (Rhodeus amarus). Evolution 63, 377–390. (10.1111/j.1558-5646.2008.00572.x) PubMed DOI
Smith C, Reynolds JD, Sutherland WJ. 2000. The population consequences of reproductive decisions. Proc. R. Soc. Lond. B 267, 1327–1334. (10.1098/rspb.2000.1146) PubMed DOI PMC
Individual experience as a key to success for the cuckoo catfish brood parasitism
Dryad
10.5061/dryad.HS31Q