• This record comes from PubMed

Cognitive ability is heritable and predicts the success of an alternative mating tactic

. 2015 Jun 22 ; 282 (1809) : 20151046.

Language English Country Great Britain, England Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

The ability to attract mates, acquire resources for reproduction, and successfully outcompete rivals for fertilizations may make demands on cognitive traits--the mechanisms by which an animal acquires, processes, stores and acts upon information from its environment. Consequently, cognitive traits potentially undergo sexual selection in some mating systems. We investigated the role of cognitive traits on the reproductive performance of male rose bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative mating tactics. We quantified the learning accuracy of males and females in a spatial learning task and scored them for learning accuracy. Males were subsequently allowed to play the roles of a guarder and a sneaker in competitive mating trials, with reproductive success measured using paternity analysis. We detected a significant interaction between male mating role and learning accuracy on reproductive success, with the best-performing males in maze trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-classified breeding design, learning accuracy was demonstrated to be heritable, with significant additive maternal and paternal effects. Our results imply that male cognitive traits may undergo intra-sexual selection.

See more in PubMed

Shettleworth SJ. 2010. Cognition, evolution, and behavior, 2nd edn Oxford, UK: Oxford University Press.

Byrne RW, Bates LA. 2007. Sociality, evolution and cognition. Curr. Biol. 17, R714–R723. (10.1016/j.cub.2007.05.069) PubMed DOI

Dukas R. 2004. Evolutionary biology of animal cognition. Annu. Rev. Ecol. Syst. 35, 347–374. (10.1146/annurev.ecolsys.35.112202.130152) DOI

Thornton A, Clayton NS, Grodzinski U. 2012. Animal minds: from computation to evolution. Phil. Trans. R. Soc. B 367, 2670–2676. (10.1098/rstb.2012.0270) PubMed DOI PMC

Boogert NJ, Fawcett TW, Lefebvre L. 2011. Mate choice for cognitive traits: a review of the evidence in nonhuman vertebrates. Behav. Ecol. 22, 447–459. (10.1093/beheco/arq173) DOI

Darwin C. 1871. The descent of man. London, UK: John Murray.

Thornton A, Isden J, Madden JR. 2014. Toward wild psychometrics: linking individual cognitive differences to fitness. Behav. Ecol. 25, 1299–1301. (10.1093/beheco/aru095) DOI

Cauchard L, Boogert NJ, Lefebvre L, Dubois F, Doligez B. 2013. Problem-solvng performance is correlated with reproductive success in a wild bird population. Anim. Behav. 85, 19–26. (10.1016/j.anbehav.2012.10.005) DOI

Cole EF, Morand-Ferron J, Hinks AE, Quinn JL. 2012. Cognitive ability influences reproductive life history variation in the wild. Curr. Biol. 22, 1808–1812. (10.1016/j.cub.2012.07.051) PubMed DOI

Keagy J, Savard J-F, Borgia G. 2009. Male satin bowerbird problem-solving ability predicts mating success. Anim. Behav. 78, 809–817. (10.1016/j.anbehav.2009.07.011) DOI

Keagy J, Savard J-F, Borgia G. 2011. Complex relationship between multiple measures of cognitive ability and male mating success in satin bowerbirds, Ptilonorhynchus violaceus. Anim. Behav. 81, 1063–1070. (10.1016/j.anbehav.2011.02.018) DOI

Keagy J, Savard J-F, Borgia G. 2012. Cognitive ability and the evolution of multiple behavioral display traits. Behav. Ecol. 23, 448–456. (10.1093/beheco/arr211) DOI

Hollis B, Kawecki TJ. 2014. Male cognitive performance declines in the absence of sexual selection. Proc. R. Soc. B 281, 20132873 (10.1098/rspb.2013.2873) PubMed DOI PMC

Smith C, Reichard M, Jurajda P, Przybylski M. 2004. The reproductive ecology of the European bitterling (Rhodeus sericeus). J. Zool. Lond. 262, 107–124. (10.1017/S0952836903004497) DOI

Wootton RJ, Smith C. 2015. Reproductive biology of teleost fishes. Oxford, UK: Wiley-Blackwell.

Reichard M, Smith C, Jordan WC. 2004. Genetic evidence reveals density-dependent mediated success of alternative mating tactics in the European bitterling (Rhodeus sericeus). Mol. Ecol. 13, 1569–1578. (10.1111/j.1365-294X.2004.02151.x) PubMed DOI

Smith C, Reichard M. 2013. A sperm competition model for the European bitterling (Rhodeus amarus). Behaviour 150, 1709–1730. (10.1163/1568539X-00003116) DOI

Smith C, Pateman-Jones C, Zięba G, Przybylski M, Reichard M. 2009. Sperm depletion as a consequence of increased sperm competition risk in the European bitterling (Rhodeus amarus). Anim. Behav. 77, 1227–1233. (10.1016/j.anbehav.2009.01.027) DOI

Brown C, Braithwaite VA. 2005. Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behav. Ecol. 16, 482–487. (10.1093/beheco/ari016) DOI

Spence R, Magurran AE, Smith C. 2011. Spatial cognition in zebrafish: the role of strain and rearing environment. Anim. Cogn. 14, 607–612. (10.1007/s10071-011-0391-8) PubMed DOI

Cameron DA. 2002. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish. Vis. Neurosci. 19, 365–372. (10.1017/S0952523802192121) PubMed DOI

Raine NE, Chittka L. 2008. The correlation of learning speed and natural foraging success in bumble-bees. Proc. R. Soc. B 275, 803–808. (10.1098/rspb.2007.1652) PubMed DOI PMC

Brown C, Jones F, Braithwaite V. 2005. In situ examination of boldness–shyness traits in the tropical poeciliid, Brachyraphis episcopi. Anim. Behav. 70, 1003–1009. (10.1016/j.anbehav.2004.12.022) DOI

Spence R, Wootton RJ, Barber I, Przybylski M, Smith C. 2013. Ecological causes of morphological evolution in the three-spined stickleback. Ecol. Evol. 3, 1717–1726. (10.1002/ece3.581) PubMed DOI PMC

Casalini M, Agbali M, Reichard M, Konečná M, Bryjová A, Smith C. 2009. Male dominance, female mate choice and intersexual conflict in the rose bitterling (Rhodeus ocellatus). Evolution 63, 366–376. (10.1111/j.1558-5646.2008.00555.x) PubMed DOI

Reichard M, Smith C, Bryja J. 2008. Seasonal change in the opportunity for sexual selection. Mol. Ecol. 17, 642–651. (10.1111/j.1365-294X.2007.03602.x) PubMed DOI

Dawson DA, Burland TM, Douglas AE, Le Comber SC, Bradshaw M. 2003. Isolation of microsatellite loci in the freshwater fish, the bitterling Rhodeus sericeus (Teleostei: Cyprinidae). Mol. Ecol. Notes 3, 199–202. (10.1046/j.1471-8286.2003.00395.x) DOI

Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106. (10.1111/j.1365-294X.2007.03089.x) PubMed DOI

Lynch M, Walsh B. 1998. Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer Associates.

Agbali M, Reichard M, Bryjová A, Bryja J, Smith C. 2010. Mate choice for non-additive genetic benefits correlate with MHC dissimilarity in the rose bitterling (Rhodeus ocellatus). Evolution 64, 1683–1696. (10.1111/j.1558-5646.2010.00961.x) PubMed DOI

Yokoi K, Ohta H, Hosoya K. 2008. Sperm motility and cryopreservation of spermatozoa in freshwater gobies. J. Fish Biol. 72, 534–544. (10.1111/j.1095-8649.2007.01719.x) DOI

Ieno EN, Zuur AF. 2015. Data exploration and visualisation with R. Newburgh, UK: Highland Statistics.

R Development Core Team. 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Harrison XA. 2014. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (10.7717/peerj.616) PubMed DOI PMC

Wootton RJ. 1998. The ecology of teleost fishes, 2nd edn Dordrecht, The Netherlands: Kluwer.

Casalini M, Reichard M, Smith C. 2010. The effect of crowding and density on male mating tactics in the rose bitterling (Rhodeus ocellatus). Behaviour 147, 1035–1050. (10.1163/000579510X504879) DOI

Smith C, Warren M, Rouchet R, Reichard M. 2014. The function of multiple ejaculations in bitterling. J. Evol. Biol. 27, 1819–1829. (10.1111/jeb.12432) PubMed DOI

Smith C, Reichard M, Jurajda P. 2003. Assessment of sperm competition by bitterling (Rhodeus sericeus). Behav. Ecol. Sociobiol. 53, 206–213. (10.1007/s00265-002-0576-x) DOI

Pateman-Jones C, et al. 2011. Variation in male reproductive traits among three bitterling fishes (Acheilognathinae: Cyprinidae) in relation to mating system. Biol. J. Linn. Soc. 103, 622–632. (10.1111/j.1095-8312.2011.01648.x) DOI

Smith C, Reichard M. 2005. Females solicit sneakers to improve fertilisation success in the bitterling (Rhodeus sericeus). Proc. R. Soc. B 272, 1683–1688. (10.1098/rspb.2005.3140) PubMed DOI PMC

Smith C, Douglas A, Jurajda P. 2002. Sexual conflict, sexual selection, and sperm competition in the spawning decisions of bitterling (Rhodeus sericeus). Behav. Ecol. Sociobiol. 51, 433–439. (10.1007/s00265-002-0468-0) DOI

Davies G, et al. 2011. Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol. Psychiatr. 16, 996–1005. (10.1038/mp.2011.85) PubMed DOI PMC

Deary IJ, Penke L, Johnson W. 2010. The neuroscience of human intelligence differences. Nat. Rev. Neurosci. 11, 201–211. PubMed

Byrne RW. 2000. Evolution of primate cognition. Cogn. Sci. 24, 543–570. (10.1207/s15516709cog2403_8) DOI

Kotrschal A, et al. 2013. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171. (10.1016/j.cub.2012.11.058) PubMed DOI PMC

Reichard M, Jurajda P, Smith C. 2004. Male–male interference competition decreases spawning rate in the European bitterling (Rhodeus sericeus). Behav. Ecol. Sociobiol. 56, 34–41. (10.1007/s00265-004-0760-2) DOI

Reichard M, Ondračková M, Bryjová A, Smith C, Bryja P. 2009. Breeding resource distribution affects selection gradients on male phenotypic traits: experimental study on lifetime reproductive success in the bitterling fish (Rhodeus amarus). Evolution 63, 377–390. (10.1111/j.1558-5646.2008.00572.x) PubMed DOI

Smith C, Reynolds JD, Sutherland WJ. 2000. The population consequences of reproductive decisions. Proc. R. Soc. Lond. B 267, 1327–1334. (10.1098/rspb.2000.1146) PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Individual experience as a key to success for the cuckoo catfish brood parasitism

. 2022 Mar 31 ; 13 (1) : 1723. [epub] 20220331

See more in PubMed

Dryad
10.5061/dryad.HS31Q

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...