Origin of tensile strength of a woven sample cut in bias directions

. 2015 May ; 2 (5) : 140499. [epub] 20150513

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26064655

Textile fabrics are highly anisotropic, so that their mechanical properties including strengths are a function of direction. An extreme case is when a woven fabric sample is cut in such a way where the bias angle and hence the tension loading direction is around 45° relative to the principal directions. Then, once loaded, no yarn in the sample is held at both ends, so the yarns have to build up their internal tension entirely via yarn-yarn friction at the interlacing points. The overall fabric strength in such a sample is a result of contributions from the yarns being pulled out and those broken during the process, and thus becomes a function of the bias direction angle θ, sample width W and length L, along with other factors known to affect fabric strength tested in principal directions. Furthermore, in such a bias sample when the major parameters, e.g. the sample width W, change, not only the resultant strengths differ, but also the strength generating mechanisms (or failure types) vary. This is an interesting problem and is analysed in this study. More specifically, the issues examined in this paper include the exact mechanisms and details of how each interlacing point imparts the frictional constraint for a yarn to acquire tension to the level of its strength when both yarn ends were not actively held by the testing grips; the theoretical expression of the critical yarn length for a yarn to be able to break rather than be pulled out, as a function of the related factors; and the general relations between the tensile strength of such a bias sample and its structural properties. At the end, theoretical predictions are compared with our experimental data.

Zobrazit více v PubMed

Hearle JWS, Grosberg P, Backer S. 1969. Structural mechanics of yarns and fabrics. New York, NY: Wiley-Interscience.

Pan N. 2014. Exploring the significance of structural hierarchy in material systems: a review. Appl. Phys. Rev. 1, 021302 (doi:10.1063/1.4871365) DOI

Shahpurwala AA, Schwartz P. 1989. Modeling woven fabric tensile-strength using statistical bundle theory. Text. Res. J. 59, 26–32. (doi:10.1177/004051758905900104) DOI

Pan N. 1996. Analysis of woven fabric strengths: prediction of fabric strength under uniaxial and biaxial extensions. Compos. Sci. Technol. 56, 311–327. (doi:10.1016/0266-3538(95)00114-X) DOI

Kilby WF. 1963. Planar stress–strain relationship in woven fabrics. J. Text. Inst. 53, 9 (doi:10.1080/19447026308659910) DOI

Cooper D. 1963. A bias extension test. Text. Res. J. 33, 315–317

Spivak SM. 1966. Behavior of fabrics in shear. I. Instrumental method and effect of test conditions. Text. Res. J. 36, 1056 (doi:10.1177/004051756603601205) DOI

Buckenham P. 1997. Bias-extension measurements on woven fabrics. J. Text. Inst. 88, 33–40. (doi:10.1080/00405009708658527) DOI

Du ZQ, Yu WD. 2008. Analysis of shearing properties of woven fabrics based on bias extension. J. Text. Inst. 99, 385–392. (doi:10.1080/00405000701584345) DOI

Spivak SM, Treloar LRG. 1986. Behavior of fabrics in shear part III: relation between bias extension and simple shear. Text. Res. J. 38, 963–971. (doi:10.1177/004051756803800911) DOI

Naujokaityte L, Strazdiene E, Domskiene J. 2008. Investigation of fabric behaviour in bias extension at low loads. Fibres Text. Eastern Eur. 16, 59–63

Bekampiene P, Domskiene J. 2009. Analysis of fabric specimen aspect ratio and deformation mechanism during bias tension. Mater. Sci. Medziagotyra 15, 167–172

Dolatabadi MK, Kovar R. 2009. Geometry of plain weave fabric under shear deformation. Part II: 3D model of plain weave fabric before deformation. J. Text. Inst. 100, 381–386. (doi:10.1080/00405000701830631) DOI

Dridi S, Dogui A, Boisse P. 2011. Finite element analysis of bias extension test using an orthotropic hyperelastic continuum model for woven fabric. J. Text. Inst. 102, 781–789. (doi:10.1080/00405000.2010.522048) DOI

Harrison P, Abdiwi F, Guo Z, Potluri P, Yu WR. 2012. Characterising the shear-tension coupling and wrinkling behaviour of woven engineering fabrics. Compos. A, Appl. Sci. Manuf. 43, 903–914. (doi:10.1016/j.compositesa.2012.01.024) DOI

Pan N, Yoon MY. 1996. Structural anisotropy, failure criterion, and shear strength of woven fabrics. Text. Res. J. 66, 238–244. (doi:10.1177/004051759606600409) DOI

Pan N, Zhang XS. 1997. Shear strength of fibrous sheets: an experimental investigation. Text. Res. J. 67, 593–600

Bassett RJ, Postle R, Pan N. 1999. Experimental methods for measuring fabric mechanical properties: a review and analysis. Text. Res. J. 69, 866–875. (doi:10.1177/004051759906901111) DOI

Peng XQ, Cao J. 2002. A dual homogenization and finite element approach for material characterization of textile composites. Compos. B Eng. 33, 45–56. (doi:10.1016/S1359-8368(01)00052-X) DOI

Potter K. 2002. Bias extension measurements on cross-plied unidirectional prepreg. Compos. A, Appl. Sci. Manuf. 33, 63–73. (doi:10.1016/S1359-835X(01)00057-4) DOI

Lebrun G, Bureau MN, Denault J. 2003. Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos. Struct. 61, 341–352. (doi:10.1016/S0263-8223(03)00057-6) DOI

Peng XQ, Cao J. 2005. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Compos. 36, 859–874. (doi:10.1016/j.compositesa.2004.08.008) DOI

Yu TX, Zhu B, Tao XM. 2007. An experimental study of in-plane large shear deformation of woven fabric composite. Compos. Sci. Technol. 67, 252–261. (doi:10.1016/j.compscitech.2006.08.011) DOI

Rosen BM. 1965. Fiber composite materials. Metals Park, Ohio: American Society for Metals.

Scelzo WA, Backer S, Boyce MC. 1994. Mechanistic role of yarn and fabric structure in determining tear resistance of woven cloth 0.2. Modeling tongue tear. Text. Res. J. 64, 321–329. (doi:10.1177/004051759406400603) DOI

Scelzo WA, Backer S, Boyce MC. 1994. Mechanistic role of yarn and fabric structure in determining tear resistance of woven cloth 0.1. Understanding tongue tear. Text. Res. J. 64, 291–304. (doi:10.1177/004051759406400506) DOI

Realff ML, Seo M, Boyce MC, Schwartz P, Backer S. 1991. Mechanical properties of fabrics woven from yarns produced by different spinning technologies: yarn failure as a function of gauge length. Text. Res. J. 61, 517–530. (doi:10.1177/004051759106100904) DOI

Pan N, Chen HC, Thompson J, Inglesby MK, Zeronian SH. 1998. Investigation on the strength-size relationship in fibrous structures including composites. J. Mater. Sci. 33, 2667–2672. (doi:10.1023/A:1004325907536) DOI

Sebastian S, Bailey AI, Briscoe BJ, Tabor D. 1986. Effect of a softening agent on yarn pull-out force of a plain weave fabric. Text. Res. J. 56, 604–611. (doi:10.1177/004051758605601003) DOI

Sebastian S, Bailey AI, Briscoe BJ, Tabor D. 1987. Extensions, displacements and forces associated with pulling a single yarn from a fabric. J. Phys. D, Appl. Phys. 20, 130–139. (doi:10.1088/0022-3727/20/1/020) DOI

Pan N, Yoon MY. 1993. Behavior of yarn pullout from woven fabrics: theoretical and experimental. Text. Res. J. 63, 629–637. (doi:10.1177/004051759306301103) DOI

Bilisik K. 2012. Experimental determination of fabric shear by yarn pull-out method. Text. Res. J. 82, 1050–1064. (doi:10.1177/0040517511431318) DOI

Peirce FT. 1926. Tensile test for cotton yarns, the weakest link theorems on the strength of long and of composite specimens. J. Text. Inst. 17, 355–368. (doi:10.1080/19447027.1926.10599953) DOI

Coleman BD. 1958. On the strength of classical fibers and fiber bundles. J. Mech. Phys. Solids 7, 60–70. (doi:10.1016/0022-5096(58)90039-5) DOI

Daniels HE. 1945. The statistical theory of the strength of bundles of threads. I. Proc. R. Soc. Lond. A 183, 405–435. (doi:10.1098/rspa.1945.0011) DOI

Monego CJ, Backer S. 1968. Tensile rupture of blended yarns. Text. Res. J. 38, 762–766. (doi:10.1177/004051756803800712) DOI

Wimolkiatisak AS, Bell JP. 1989. Interfacial shear strength and failure types of interphase modified graphite-epoxy composites. Polym. Compos. 10, 162–172. (doi:10.1002/pc.750100304) DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...