Vitamin D Binding Protein Is Not Involved in Vitamin D Deficiency in Patients with Chronic Kidney Disease

. 2015 ; 2015 () : 492365. [epub] 20150504

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26064917

OBJECTIVE: This study was designed to evaluate vitamin D status with separate determination of 25-OH D2 and 25-OH D3 and its relationship to vitamin D binding protein (VDBP) in patients with chronic kidney disease (CKD) and long-term haemodialysis patients (HD). METHODS: 45 CKD patients, 103 HD patients, and 25 controls (C) were included. Plasma vitamin D concentrations were determined using chromatography and VDBP in serum and urine in CKD using enzyme immunoassay. RESULTS: Plasma vitamin D levels were lower in CKD (30.16 ± 16.74 ng/mL) and HD (18.85 ± 15.85 ng/mL) versus C (48.72 ± 18.35 ng/mL), P < 0.0001. 25-OH D3 was the dominant form of vitamin D. Serum VDBP was higher in CKD (273.2 ± 93.8 ug/mL) versus C (222 ± 87.6 ug/mL) and HD (213.8 ± 70.9 ug/mL), P = 0.0003. Vitamin D/VDBP ratio was the highest in C and the lowest in HD; however, there was no correlation between vitamin D and VDBP. Urinary concentration of VDBP in CKD (0.25 ± 0.13 ug/mL) correlated with proteinuria (r = 0.43, P = 0.003). CONCLUSIONS: Plasma levels of vitamin D are decreased in CKD patients and especially in HD patients. 25-OH D3 was the major form of vitamin D. Despite urinary losses of VDBP, CKD patients had higher serum VDBP concentrations, indicating compensatory enhanced production. Vitamin D binding protein is not involved in vitamin D deficiency.

Zobrazit více v PubMed

Holick M. F. Vitamin D deficiency. The New England Journal of Medicine. 2007;357:266–281. doi: 10.1056/nejmra070553. PubMed DOI

Holick M. F. Vitamin D status: measurement, interpretation, and clinical application. Annals of Epidemiology. 2009;19(2):73–78. doi: 10.1016/j.annepidem.2007.12.001. PubMed DOI PMC

Binkley N., Ramamurthy R., Krueger D. Low vitamin D status: definition, prevalence, consequences, and correction. Endocrinology and Metabolism Clinics of North America. 2010;39(2):287–301. doi: 10.1016/j.ecl.2010.02.008. PubMed DOI PMC

Nigwekar S. U., Bhan I., Thadhani R. Ergocalciferol and cholecalciferol in CKD. The American Journal of Kidney Diseases. 2012;60(1):139–156. doi: 10.1053/j.ajkd.2011.12.035. PubMed DOI

González E. A., Sachdeva A., Oliver D. A., Martin K. J. Vitamin D insufficiency and deficiency in chronic kidney disease: a single center observational study. American Journal of Nephrology. 2004;24(5):503–510. doi: 10.1159/000081023. PubMed DOI

LaClair R. E., Hellman R. N., Karp S. L., et al. Prevalence of calcidiol deficiency in CKD: a cross-sectional study across latitudes in the United States. American Journal of Kidney Diseases. 2005;45(6):1026–1033. doi: 10.1053/j.ajkd.2005.02.029. PubMed DOI

Levin A., Bakris G. L., Molitch M., et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney International. 2007;71(1):31–38. doi: 10.1038/sj.ki.5002009. PubMed DOI

Jean G., Charra B., Chazot C. Vitamin D deficiency and associated factors in hemodialysis patients. Journal of Renal Nutrition. 2008;18(5):395–399. doi: 10.1053/j.jrn.2008.04.003. PubMed DOI

Echida Y., Mochizuki T., Uchida K., Tsuchiya K., Nitta K. Risk factors for vitamin D deficiency in patients with chronic kidney disease. Internal Medicine. 2012;51(8):845–850. doi: 10.2169/internalmedicine.51.6897. PubMed DOI

Dusilová-Sulková S., Šafránek R., Vávrová J., Horáček J., Pavlíková L., Palička V. Low-dose cholecalciferol supplementation and dual vitamin D therapy in haemodialysis patients. International Urology and Nephrology. 2015;47(1):169–176. doi: 10.1007/s11255-014-0842-7. PubMed DOI

Yousefzadeh P., Shapses S. A., Wang X. Vitamin D binding protein impact on 25-hydroxyvitamin D levels under different physiologic and pathologic conditions. International Journal of Endocrinology. 2014;2014:6. doi: 10.1155/2014/981581.981581 PubMed DOI PMC

Taskapan H., Wei M., Oreopoulos D. G. 25(OH) vitamin D3 in patients with chronic kidney disease and those on dialysis: rediscovering its importance. International Urology and Nephrology. 2006;38(2):323–329. doi: 10.1007/s11255-006-0081-7. PubMed DOI

Melamed M. L., Thadhani R. I. Vitamin D therapy in chronic kidney disease and end stage renal disease. Clinical Journal of the American Society of Nephrology. 2012;7(2):358–365. doi: 10.2215/cjn.04040411. PubMed DOI PMC

Speeckaert M., Huang G., Delanghe J. R., Taes Y. E. C. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clinica Chimica Acta. 2006;372(1-2):33–42. doi: 10.1016/j.cca.2006.03.011. PubMed DOI

Chun R. F. New perspectives on the vitamin D binding protein. Cell Biochemistry and Function. 2012;30(6):445–456. doi: 10.1002/cbf.2835. PubMed DOI

Brown A. J., Coyne D. W. Bioavailable vitamin D in chronic kidney disease. Kidney International. 2012;82(1):5–7. doi: 10.1038/ki.2012.135. PubMed DOI

Nykjaer A., Dragun D., Walther D., et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell. 1999;96(4):507–515. doi: 10.1016/S0092-8674(00)80655-8. PubMed DOI

Leheste J.-R., Rolinski B., Vorum H., et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. American Journal of Pathology. 1999;155(4):1361–1370. doi: 10.1016/s0002-9440(10)65238-8. PubMed DOI PMC

Nykjaer A., Fyfe J. C., Kozyraki R., et al. Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D3 . Proceedings of the National Academy of Sciences of the United States of America. 2001;98(24):13895–13900. doi: 10.1073/pnas.241516998. PubMed DOI PMC

Piquette C. A., Robinson-Hill R., Webster R. O. Human monocyte chemotaxis to complement-derived chemotaxins is enhanced by Gc-globulin. Journal of Leukocyte Biology. 1994;55(3):349–354. PubMed

Adebanjo O. A., Moonga B. S., Haddad J. G., Huang C. L.-H., Zaidi M. A possible new role for vitamin D-binding protein in osteoclast control: inhibition of extracellular Ca2+ sensing at low physiological concentrations. Biochemical and Biophysical Research Communications. 1998;249(3):668–671. doi: 10.1006/bbrc.1998.9037. PubMed DOI

Wallace A. M., Gibson S., de la Hunty A., Lamberg-Allardt C., Ashwell M. Measurement of 25-hydroxyvitamin D in the clinical laboratory: current procedures, performance characteristics and limitations. Steroids. 2010;75(7):477–488. doi: 10.1016/j.steroids.2010.02.012. PubMed DOI

Moon H.-W., Cho J.-H., Hur M., et al. Comparison of four current 25-hydroxyvitamin D assays. Clinical Biochemistry. 2012;45(4-5):326–330. doi: 10.1016/j.clinbiochem.2011.12.025. PubMed DOI

Heijboer A. C., Blankenstein M. A., Kema I. P., Buijs M. M. Accuracy of 6 routine 25-hydroxyvitamin D assays: influence of vitamin D binding protein concentration. Clinical Chemistry. 2012;58(3):543–548. doi: 10.1373/clinchem.2011.176545. PubMed DOI

Michaud J., Naud J., Ouimet D., et al. Reduced hepatic synthesis of calcidiol in uremia. Journal of the American Society of Nephrology. 2010;21(9):1488–1497. doi: 10.1681/asn.2009080815. PubMed DOI PMC

Doorenbos C. R. C., de Cuba M. M., Vogt L., et al. Antiproteinuric treatment reduces urinary loss of vitamin D-binding protein but does not affect vitamin D status in patients with chronic kidney disease. The Journal of Steroid Biochemistry and Molecular Biology. 2012;128(1-2):56–61. doi: 10.1016/j.jsbmb.2011.09.002. PubMed DOI

van Hoof H. J. C., de Sévaux R. G. L., van Baelen H., et al. Relationship between free and total 1,25-dihydroxyvitamin D in conditions of modified binding. European Journal of Endocrinology. 2001;144(4):391–396. doi: 10.1530/eje.0.1440391. PubMed DOI

Anic G. M., Weinstein S. J., Mondul A., Mannisto S., Albanes D. Serum vitamin D, vitamin D binding protein, and risk of colorectal cancer. PLoS ONE. 2014;9(7) doi: 10.1371/journal.pone.0102966.e102966 PubMed DOI PMC

Mirković K., Doorenbos C. R. C., Dam W. A., et al. Urinary vitamin D binding protein: a potential novel marker of renal interstitial inflammation and fibrosis. PLoS ONE. 2013;8(2) doi: 10.1371/journal.pone.0055887.e55887 PubMed DOI PMC

Mendel C. M. The free hormone hypothesis: a physiologically based mathematical model. Endocrine Reviews. 1989;10(3):232–274. doi: 10.1210/edrv-10-3-232. PubMed DOI

Bhan I., Powe C. E., Berg A. H., et al. Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney International. 2012;82(1):84–89. doi: 10.1038/ki.2012.19. PubMed DOI PMC

Jean G., Terrat J. C., Vanel T., et al. Evidence for persistent vitamin D 1-alpha-hydroxylation in hemodialysis patients: evolution of serum 1,25-dihydroxycholecalciferol after 6 months of 25-hydroxycholecalciferol treatment. Nephron Clinical Practice. 2008;110(1):c58–c65. doi: 10.1159/000151534. PubMed DOI

Cunningham J., Locatelli F., Rodriguez M. Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clinical Journal of the American Society of Nephrology. 2011;6(4):913–921. doi: 10.2215/cjn.06040710. PubMed DOI

Slatopolsky E., Brown A., Dusso A. Pathogenesis of secondary hyperparathyroidism. Kidney International. 1999;56(73):S14–S19. doi: 10.1046/j.1523-1755.1999.07104.x. PubMed DOI

Xie Z., Santora A. C., Shapses S. A., Wang X. Vitamin D binding protein and vitamin D levels. International Journal of Endocrinology. 2014;2014:2. doi: 10.1155/2014/638263.638263 PubMed DOI PMC

Ross A. C., Manson J. E., Abrams S. A., et al. Clarification of DRIs for calcium and vitamin D across age groups. Journal of the American Dietetic Association. 2011;111(10):p. 1467. doi: 10.1016/j.jada.2011.08.022. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...