• This record comes from PubMed

Diversity of O Antigens within the Genus Cronobacter: from Disorder to Order

. 2015 Aug 15 ; 81 (16) : 5574-82. [epub] 20150612

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
Wellcome Trust - United Kingdom

Cronobacter species are Gram-negative opportunistic pathogens that can cause serious infections in neonates. The lipopolysaccharides (LPSs) that form part of the outer membrane of such bacteria are possibly related to the virulence of particular bacterial strains. However, currently there is no clear overview of O-antigen diversity within the various Cronobacter strains and links with virulence. In this study, we tested a total of 82 strains, covering each of the Cronobacter species. The nucleotide variability of the O-antigen gene cluster was determined by restriction fragment length polymorphism (RFLP) analysis. As a result, the 82 strains were distributed into 11 previously published serotypes and 6 new serotypes, each defined by its characteristic restriction profile. These new serotypes were confirmed using genomic analysis of strains available in public databases: GenBank and PubMLST Cronobacter. Laboratory strains were then tested using the current serotype-specific PCR probes. The results show that the current PCR probes did not always correspond to genomic O-antigen gene cluster variation. In addition, we analyzed the LPS phenotype of the reference strains of all distinguishable serotypes. The identified serotypes were compared with data from the literature and the MLST database (www.pubmlst.org/cronobacter/). Based on the findings, we systematically classified a total of 24 serotypes for the Cronobacter genus. Moreover, we evaluated the clinical history of these strains and show that Cronobacter sakazakii O2, O1, and O4, C. turicensis O1, and C. malonaticus O2 serotypes are particularly predominant in clinical cases.

See more in PubMed

Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H. 2008. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 58(Pt 6):1442–1447. doi:10.1099/ijs.0.65577-0. PubMed DOI

Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ. 2012. Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Int J Syst Evol Microbiol 62:1277–1283. doi:10.1099/ijs.0.032292-0. PubMed DOI

Kucerova E, Clifton SW, Xia XQ, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash WE, Hallsworth-Pepin K, Wilson RK, McClelland M, Forsythe SJ. 2010. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One 5:e9556. doi:10.1371/journal.pone.0009556. PubMed DOI PMC

Holý O, Forsythe S. 2014. Cronobacter spp. as emerging causes of healthcare-associated infection. J Hosp Infect 86:169–177. doi:10.1016/j.jhin.2013.09.011. PubMed DOI

Jaradat ZW, Al Mousa W, Elbetieha A, Al Nabulsi A, Tall BD. 2014. Cronobacter spp.—opportunistic food-borne pathogens. A review of their virulence and environmental-adaptive traits. J Med Microbiol 63(Pt 8):1023–1037. PubMed

Knirel YA, Valvano MA. 2011. Bacterial lipopolysaccharides: structure, chemical synthesis, biogenesis and interaction with host cells. Springer, New York, NY.

Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CRH, Rick PD. 1996. Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4:495–503. doi:10.1016/S0966-842X(97)82912-5. PubMed DOI

Bergan T. 1984. Methods in microbiology. Elsevier Science BV, Amsterdam, Netherlands.

Herikstad H, Motarjemi Y, Tauxe RV. 2002. Salmonella surveillance: a global survey of public health serotyping. Epidemiol Infect 129:1–8. PubMed PMC

Sun Y, Wang M, Liu H, Wang J, He X, Zeng J, Guo X, Li K, Cao B, Wang L. 2011. Development of an O-antigen serotyping scheme for Cronobacter sakazakii. Appl Environ Microbiol 77:2209–2214. doi:10.1128/AEM.02229-10. PubMed DOI PMC

Sun Y, Arbatsky NP, Wang M, Shashkov AS, Liu B, Wang L, Knirel YA. 2012. Structure and genetics of the O-antigen of Cronobacter turicensis G3882 from a new serotype, C turicensis O2, and identification of a serotype-specific gene. FEMS Immunol Med Microbiol 66:323–333. doi:10.1111/j.1574-695X.2012.01013.x. PubMed DOI

Sun Y, Wang M, Wang Q, Cao B, He X, Li K, Feng L, Wang L. 2012. Genetic analysis of the Cronobacter sakazakii O4 to O7 O-antigen gene clusters and development of a PCR assay for identification of all C. sakazakii O serotypes. Appl Environ Microbiol 78:3966–3974. doi:10.1128/AEM.07825-11. PubMed DOI PMC

Jarvis KG, Grim CJ, Franco AA, Gopinath G, Sathyamoorthy V, Hu L, Sadowski JA, Lee CS, Tall BD. 2011. Molecular characterization of Cronobacter lipopolysaccharide O-antigen gene clusters and development of serotype-specific PCR assays. Appl Environ Microbiol 77:4017–4026. doi:10.1128/AEM.00162-11. PubMed DOI PMC

Jarvis KG, Yan QQ, Grim CJ, Power KA, Franco AA, Hu L, Gopinath G, Sathyamoorthy V, Kotewicz ML, Kothary MH, Lee C, Sadowski J, Fanning S, Tall BD. 2013. Identification and characterization of five new molecular serogroups of Cronobacter spp. Foodborne Pathog Dis 10:343–352. doi:10.1089/fpd.2012.1344. PubMed DOI

Mullane N, O'Gaora P, Nally JE, Iversen C, Whyte P, Wall PG, Fanning S. 2008. Molecular analysis of the Enterobacter sakazakii O-antigen gene locus. Appl Environ Microbiol 74:3783–3794. doi:10.1128/AEM.02302-07. PubMed DOI PMC

Stoop B, Lehner A, Iversen C, Fanning S, Stephan R. 2009. Development and evaluation of rpoB based PCR systems to differentiate the six proposed species within the genus Cronobacter. Int J Food Microbiol 136:165–168. doi:10.1016/j.ijfoodmicro.2009.04.023. PubMed DOI

Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson C, Forsythe S. 2009. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 9:223. doi:10.1186/1471-2180-9-223. PubMed DOI PMC

Joseph S, Sonbol H, Hariri S, Desai P, McClelland M, Forsythe SJ. 2012. Diversity of the Cronobacter genus as revealed by multilocus sequence typing. J Clin Microbiol 50:3031–3039. doi:10.1128/JCM.00905-12. PubMed DOI PMC

Karamonová L, Junková P, Mihalová D, Javùrková B, Fukal L, Rauch P, Blažková M. 2013. The potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of biogroups of Cronobacter sakazakii. Rapid Commun Mass Spectrom 27:409–418. doi:10.1002/rcm.6464. PubMed DOI

Tatusova TCS, Fedorov B, O'Neill K, Tolstoy I. 2014. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 42(Database issue):D553–D559. doi:10.1093/nar/gkt1274 Accessed 30 November 2014. PubMed DOI PMC

Jolley KA, Maiden MC. 2010. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595. doi:10.1186/1471-2105-11-595. PubMed DOI PMC

Arbatsky NP, Wang M, Shashkov AS, Feng L, Knirel YA, Wang L. 2010. Structure of the O-polysaccharide of Cronobacter sakazakii O1 containing 3-(N-acetyl-l-alanyl)amino-3,6-dideoxy-d-glucose. Carbohydr Res 345:2095–2098. doi:10.1016/j.carres.2010.07.013. PubMed DOI

Maclean LL, Vinogradov E, Pagotto F, Farber JM, Perry MB. 2010. The structure of the O-antigen of Cronobacter sakazakii HPB 2855 isolate involved in a neonatal infection. Carbohydr Res 345:1932–1937. doi:10.1016/j.carres.2010.06.020. PubMed DOI

Arbatsky NP, Wang M, Shashkov AS, Chizhov AO, Feng L, Knirel YA, Wang L. 2010. Structure of the O-polysaccharide of Cronobacter sakazakii O2 with a randomly O-acetylated l-rhamnose residue. Carbohydr Res 345:2090–2094. doi:10.1016/j.carres.2010.07.014. PubMed DOI

Czerwicka M, Forsythe SJ, Bychowska A, Dziadziuszko H, Kunikowska D, Stepnowski P, Kaczynski Z. 2010. Structure of the O-polysaccharide isolated from Cronobacter sakazakii 767. Carbohydr Res 345:908–913. doi:10.1016/j.carres.2010.01.020. PubMed DOI

Arbatsky NP, Sun Y, Shashkov AS, Wang M, Liu B, Daeva ED, Wang L, Knirel YA. 2012. Structure and genetics of the O-antigen of Cronobacter sakazakii G2726 (serotype O3) closely related to the O-antigen of C. muytjensii 3270. Carbohydr Res 355:50–55. PubMed

Kalendar R, Lee D, Schulman AH. 2011. Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98:137–144. doi:10.1016/j.ygeno.2011.04.009. PubMed DOI

Shashkov AS, Arbatsky NP, Knirel YA. 2011. Structures and genetics of Kdo-containing O-antigens of Cronobacter sakazakii G2706 and G2704, the reference strains of serotypes O5 and O6. Carbohydr Res 346:1924–1929. doi:10.1016/j.carres.2011.05.014. PubMed DOI

Arbatsky NP, Wang M, Daeva ED, Shashkov AS, Feng L, Knirel YA, Wang L. 2011. Elucidation of the structure and characterization of the gene cluster of the O-antigen of Cronobacter sakazakii G2592, the reference strain of C. sakazakii O7 serotype. Carbohydr Res 346:1169–1172. doi:10.1016/j.carres.2011.03.022. PubMed DOI

Schnaitman CA, Klena JD. 1993. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57:655–682. PubMed PMC

Czerwicka M, Marszewska K, Forsythe SJ, Bychowska A, Mazgajczyk A, Dziadziuszko H, Ossowska K, Stepnowski P, Kaczynski Z. 2013. Chemical structure of the O-polysaccharides isolated from Cronobacter turicensis sequence type 5 strains 57, 564, and 566. Carbohydr Res 373:89–92. doi:10.1016/j.carres.2013.03.003. PubMed DOI

Arbatsky NP, Wang M, Turdymuratov EM, Hu S, Shashkov AS, Wang L, Knirel YA. 2015. Related structures of the O-polysaccharides of Cronobacter dublinensis G3983 and G3977 containing 3-(N-acetyl-l-alanyl)amino-3,6-dideoxy-d-galactose. Carbohydr Res 404:132–137. doi:10.1016/j.carres.2014.11.015. PubMed DOI

MacLean LL, Vinogradov E, Pagotto F, Perry MB. 2012. Structure of the O-antigen polysaccharide present in the lipopolysaccharide of Cronobacter dublinensis (subspecies lactaridi or lausannensis) HPB 3169. Can J Microbiol 58:540–546. doi:10.1139/w2012-022. PubMed DOI

MacLean LL, Pagotto F, Farber JM, Perry MB. 2009. The structure of the O-antigen in the endotoxin of the emerging food pathogen Cronobacter (Enterobacter) muytjensii strain 3270. Carbohydr Res 344:667–671. doi:10.1016/j.carres.2009.01.020. PubMed DOI

Marszewska K, Czerwicka M, Forsythe SJ, Saldak E, Szulta S, Dziadziuszko H, Ossowska K, Kaczynski Z. 2014. The structure of O-polysaccharide isolated from Cronobacter universalis NCTC 9529T. Carbohydr Res 398:77–79. doi:10.1016/j.carres.2014.07.014. PubMed DOI

MacLean LL, Vinogradov E, Pagotto F, Perry MB. 2011. Characterization of the lipopolysaccharide O-antigen of Cronobacter turicensis HPB3287 as a polysaccharide containing a 5,7-diacetamido-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic acid (legionaminic acid) residue. Carbohydr Res 346:2589–2594. doi:10.1016/j.carres.2011.09.003. PubMed DOI

Jaradat ZW, Rashdan AM, Ababneh QO, Jaradat SA, Bhunia AK. 2011. Characterization of surface proteins of Cronobacter muytjensii using monoclonal antibodies and MALDI-TOF mass spectrometry. BMC Microbiol 11:148. doi:10.1186/1471-2180-11-148. PubMed DOI PMC

Kenyon JJ, Reeves PR. 2013. The Wzy O-antigen polymerase of Yersinia pseudotuberculosis O:2a has a dependence on the Wzz chain-length determinant for efficient polymerization. FEMS Microbiol Lett 349:163–170. doi:10.1111/1574-6968.12311. PubMed DOI

Forsythe SJ, Dickins B, Jolley KA. 2014. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genomics 15:1121. doi:10.1186/1471-2164-15-1121. PubMed DOI PMC

Joseph S, Hariri S, Forsythe SJ. 2013. Lack of continuity between Cronobacter biotypes and species as determined using multilocus sequence typing. Mol Cell Probes 27:137–139. doi:10.1016/j.mcp.2013.02.002. PubMed DOI

Joseph S, Desai P, Ji Y, Cummings CA, Shih R, Degoricija L, Rico A, Brzoska P, Hamby SE, Masood N, Hariri S, Sonbol H, Chuzhanova N, McClelland M, Furtado MR, Forsythe SJ. 2012. Comparative analysis of genome sequences covering the seven Cronobacter species. PLoS One 7:e49455. doi:10.1371/journal.pone.0049455. PubMed DOI PMC

Joseph S, Forsythe SJ. 2011. Predominance of Cronobacter sakazakii sequence type 4 in neonatal infections. Emerg Infect Dis 17:1713–1715. doi:10.3201/eid1709.110260. PubMed DOI PMC

Daniels C, Vindurampulle C, Morona R. 1998. Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol 28:1211–1222. doi:10.1046/j.1365-2958.1998.00884.x. PubMed DOI

Morona R, Mavris M, Fallarino A, Manning PA. 1994. Characterization of the rfc region of Shigella flexneri. J Bacteriol 176:733–747. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...