Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics
Jazyk angličtina Země Japonsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26072732
DOI
10.1007/s10157-015-1135-x
PII: 10.1007/s10157-015-1135-x
Knihovny.cz E-zdroje
- Klíčová slova
- Mitochondria, Pig kidney, Proteomics, Two-dimensional electrophoresis,
- MeSH
- 2D gelová elektroforéza MeSH
- dřeň ledvin chemie MeSH
- kůra ledviny chemie MeSH
- mitochondriální proteiny analýza MeSH
- mitochondrie chemie MeSH
- modely u zvířat MeSH
- proteomika metody MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Sus scrofa MeSH
- tandemová hmotnostní spektrometrie MeSH
- translační biomedicínský výzkum metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální proteiny MeSH
BACKGROUND: Emerging evidence has linked mitochondrial dysfunction to the pathogenesis of many renal disorders, including acute kidney injury, sepsis and even chronic kidney disease. Proteomics is a powerful tool in elucidating the role of mitochondria in renal pathologies. Since the pig is increasingly recognized as a major mammalian model for translational research, the lack of physiological proteome data of large mammals prompted us to examine renal mitochondrial proteome in porcine kidney cortex and medulla METHODS: Kidneys were obtained from six healthy pigs. Mitochondria from cortex and medulla were isolated using differential centrifugation and proteome maps of cortical and medullar mitochondria were constructed using two-dimensional gel electrophoresis (2DE). Protein spots with significant difference between mitochondrial fraction of renal cortex and medulla were identified by mass spectrometry. RESULTS: Proteomic analysis identified 81 protein spots. Of these spots, 41 mitochondrial proteins were statistically different between renal cortex and medulla (p < 0.05). Protein spots containing enzymes of beta oxidation, amino acid metabolism, and gluconeogenesis were predominant in kidney cortex mitochondria. Spots containing tricarboxylic acid cycle enzymes and electron transport system proteins, proteins maintaining metabolite transport and mitochondrial translation were more abundant in medullar mitochondria. CONCLUSION: This study provides the first proteomic profile of porcine kidney cortex and medullar mitochondrial proteome. Different protein expression pattern reflects divergent functional metabolic role of mitochondria in various kidney compartments. Our study could serve as a useful reference for further porcine experiments investigating renal mitochondrial physiology under various pathological states.
Zobrazit více v PubMed
Int J Biochem Cell Biol. 2009 Oct;41(10):1805-16 PubMed
Biochim Biophys Acta. 2003 Jul 10;1604(3):135-50 PubMed
Eur J Biochem. 1985 Sep 2;151(2):361-4 PubMed
Shock. 2005 Dec;24 Suppl 1:75-81 PubMed
Nephrol Dial Transplant. 2010 Jan;25(1):11-6 PubMed
J Neurosci Res. 2013 Aug;91(8):1030-43 PubMed
Kidney Int. 2006 Dec;70(11):1929-34 PubMed
J Biol Chem. 2001 Jul 20;276(29):27605-12 PubMed
Hum Mol Genet. 2008 Dec 1;17(23):3697-707 PubMed
Proteomics Clin Appl. 2014 Oct;8(9-10):637-9 PubMed
Am J Clin Nutr. 2004 Feb;79(2):185-97 PubMed
J Biol Chem. 1981 Oct 10;256(19):10023-7 PubMed
Cell Metab. 2005 Jun;1(6):401-8 PubMed
Am J Physiol Renal Physiol. 2013 Jan 15;304(2):F145-55 PubMed
J Biol Chem. 1996 Nov 8;271(45):28006-8 PubMed
Electrophoresis. 2002 Jan;23(2):311-28 PubMed
Biochem J. 2011 Jul 15;437(2):e1-3 PubMed
Biochem J. 1998 Jul 15;333 ( Pt 2):359-66 PubMed
Nephron Physiol. 2007;105(1):p1-10 PubMed
J Histochem Cytochem. 1982 May;30(5):441-4 PubMed
Pflugers Arch. 1980 May;385(2):111-6 PubMed
Toxicol Appl Pharmacol. 2000 Sep 1;167(2):151-6 PubMed
Comp Biochem Physiol A Physiol. 1995 Oct;112(2):247-63 PubMed
Pharmacology. 2004 May;71(1):25-37 PubMed
Kidney Int. 1976 Mar;9(3):233-42 PubMed
J Clin Invest. 2009 Oct;119(10):2868-78 PubMed
Diabetes Care. 2001 Feb;24(2):382-91 PubMed
Am J Physiol Renal Physiol. 2004 Apr;286(4):F727-38 PubMed
Curr Opin Crit Care. 2013 Dec;19(6):554-9 PubMed
Kidney Int. 1984 Aug;26(2):101-11 PubMed
Physiol Rev. 2000 Jul;80(3):1107-213 PubMed
J Biol Chem. 2011 Oct 21;286(42):36500-8 PubMed
Kidney Int. 2002 Oct;62(4):1314-21 PubMed
Biochim Biophys Acta. 1995 Apr 13;1243(3):437-45 PubMed
Free Radic Biol Med. 2009 Dec 1;47(11):1517-25 PubMed
Proc Natl Acad Sci U S A. 1980 Jan;77(1):447-51 PubMed
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5787-92 PubMed
Biochem J. 1996 Dec 1;320 ( Pt 2):345-57 PubMed
Proteomics. 2011 Feb;11(4):776-93 PubMed
Metabolism. 1985 Oct;34(10):955-61 PubMed
Biochim Biophys Acta. 1995 Dec 27;1264(3):347-56 PubMed
Proteomics Clin Appl. 2010 Nov;4(10-11):829-38 PubMed
FASEB J. 2003 Jun;17(9):1096-8 PubMed
Am J Physiol Renal Physiol. 2012 Apr 1;302(7):F853-64 PubMed
Mol Cell Biochem. 2011 Nov;357(1-2):189-97 PubMed
J Clin Invest. 2009 May;119(5):1275-85 PubMed
J Proteome Res. 2012 Jun 1;11(6):3269-80 PubMed
Diabetes. 2009 Sep;58(9):1986-97 PubMed
Mol Cell Biol. 1988 Oct;8(10):4537-40 PubMed
Renal mitochondria response to sepsis: a sequential biopsy evaluation of experimental porcine model
Mitochondrial dysfunction in kidney cortex and medulla of subtotally nephrectomized rats