Mitochondrial dysfunction in kidney cortex and medulla of subtotally nephrectomized rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
36647910
PubMed Central
PMC9906659
DOI
10.33549/physiolres.935000
PII: 935000
Knihovny.cz E-zdroje
- MeSH
- chronická renální insuficience * MeSH
- citrátsynthasa MeSH
- krysa rodu Rattus MeSH
- kůra ledviny MeSH
- ledviny * metabolismus MeSH
- mitochondrie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- citrátsynthasa MeSH
Five-sixths nephrectomy is a widely used experimental model of chronic kidney disease (CKD) that is associated with severe mitochondrial dysfunction of the remnant tissue. In this study, we assessed the effect of CKD on mitochondrial respiration separately in the rat kidney cortex and medulla 10 weeks after induction of CKD by subtotal 5/6 nephrectomy (SNX). Mitochondrial oxygen consumption was evaluated on mechanically permeabilized samples of kidney cortex and medulla using high-resolution respirometry and expressed per mg of tissue wet weight or IU citrate synthase (CS) activity. Mitochondrial respiration in the renal cortex of SNX rats was significantly reduced in all measured respiratory states if expressed per unit wet weight and remained lower if recalculated per IU citrate synthase activity, i.e. per mitochondrial mass. In contrast, the profound decrease in the activity of CS in SNX medulla resulted in significantly elevated respiratory states expressing the OXPHOS capacity when Complexes I and II or II only are provided with electrons, LEAK respiration after oligomycin injection, and Complex IV-linked oxygen consumption per unit CS activity suggesting compensatory hypermetabolic state in remaining functional mitochondria that is not sufficient to fully compensate for respiratory deficit expressed per tissue mass. The results document that CKD induced by 5/6 nephrectomy in the rat is likely to cause not only mitochondrial respiratory dysfunction (in the kidney cortex), but also adaptive changes in the medulla that tend to at least partially compensate for mitochondria loss.
Zobrazit více v PubMed
Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, Van LF, Levey AS. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–2047. doi: 10.1001/jama.298.17.2038. PubMed DOI
Shafi T, Coresh J. Chronic kidney disease: Definition, epidemiology, cost, and outcomes. In: HIMMELFARB J, IKIZLER TA, editors. Chronic Kidney Disease, Dialysis, and Transplantation. Elsevier; Amsterdam: 2010. pp. 3–21. DOI
Galvan DL, Green NH, Danesh FR. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 2017;92:1051–1057. doi: 10.1016/j.kint.2017.05.034. PubMed DOI PMC
Chiong M, Cartes-Saavedra B, Norambuena-Soto I, Mondaca-Ruff D, Morales PE, García-Miguel M, Mellado R. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Front Cell Dev Biol. 2014;2:72. doi: 10.3389/fcell.2014.00072. PubMed DOI PMC
Tang C, Cai J, Yin XM, Weinberg JM, Venkatachalam MA, Dong Z. Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol. 2021;17:299–318. doi: 10.1038/s41581-020-00369-0. PubMed DOI PMC
Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol. 2014;306:F367–F378. doi: 10.1152/ajprenal.00571.2013. PubMed DOI
Aparicio-Trejo OE, Rojas-Morales P, Avila-Rojas SH, León-Contreras JC, Hernández-Pando R, Jiménez-Uribe AP, Prieto-Carrasco R, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E. Temporal alterations in mitochondrial β-oxidation and oxidative stress aggravate chronic kidney disease development in 5/6 nephrectomy induced renal damage. Int J Mol Sci. 2020;21:6512. doi: 10.3390/ijms21186512. PubMed DOI PMC
Aparicio-Trejo OE, Tapia E, Sánchez-Lozada LG, Pedraza-Chaverri J. Mitochondrial bioenergetics, redox state, dynamics and turnover alterations in renal mass reduction models of chronic kidney diseases and their possible implications in the progression of this illness. Pharmacol Res. 2018;135:1–11. doi: 10.1016/j.phrs.2018.07.015. PubMed DOI
Schiffer TA, Gustafsson H, Palm F. Kidney outer medulla mitochondria are more efficient compared with cortex mitochondria as a strategy to sustain ATP production in a suboptimal environment. Am J Physiol Renal Physiol. 2018;315:F677–F681. doi: 10.1152/ajprenal.00207.2018. PubMed DOI
Woodman AG, Mah R, Keddie DL, Noble RMN, Holody CD, Panahi S, Gragasin FS, Lemieux H, Bourque SL. Perinatal iron deficiency and a high salt diet cause long-term kidney mitochondrial dysfunction and oxidative stress. Cardiovasc Res. 2020;116:183–192. doi: 10.1093/cvr/cvz029. PubMed DOI PMC
Svíglerová J, Kuncová J, Nalos L, Holas J, Tonar Z, Rajdl D, Stengl M. Cardiac remodeling in rats with renal failure shows interventricular differences. Exp Biol Med (Maywood) 2012;237:1056–1067. doi: 10.1258/ebm.2012.012045. PubMed DOI
Nalos L, Švíglerová J, Rajdl D, Jedlička J, Dejmek J, Štengl M, Kuncová J. Norepinephrine turnover in the left ventricle of subtotally nephrectomized rats. Physiol Res. 2019;68(Suppl 3):S233–S242. doi: 10.33549/physiolres.934354. PubMed DOI
Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol. 2012;810:25–58. doi: 10.1007/978-1-61779-382-0_3. PubMed DOI
Kuznetsov AV, Strobl D, Ruttmann E, Königsrainer A, Margreiter R, Gnaiger E. Evaluation of mitochondrial respiratory function in small biopsies of liver. Anal Biochem. 2002;305:186–194. doi: 10.1006/abio.2002.5658. PubMed DOI
Grundmanová M, Jarkovská D, Süß A, Tůma Z, Marková M, Grundman Z, El-Kadi A, Čedíková M, Štengl M, Kuncová J. Propofol-induced mitochondrial and contractile dysfunction of the rat ventricular myocardium. Physiol Res. 2016;65(Suppl 5):S601–S609. doi: 10.33549/physiolres.933537. PubMed DOI
Bao YW, Yuan Y, Chen JH, Lin WQ. Kidney disease models: tools to identify mechanisms and potential therapeutic targets. Zool Res. 2018;39:72–86. doi: 10.24272/j.issn.2095-8137.2017.055. PubMed DOI PMC
Aparicio-Trejo OE, Tapia E, Molina-Jijón E, Medina-Campos ON, Macías-Ruvalcaba NA, León-Contreras JC, Hernández-Pando R, García-Arroyo FE, Cristóbal M, Sánchez-Lozada LG, Pedraza-Chaverri J. Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics. Biofactors. 2017;43:293–310. doi: 10.1002/biof.1338. PubMed DOI
Correa F, Buelna-Chontal M, Hernández-Reséndiz S, García-Niño WR, Roldán FJ, Soto V, Silva-Palacios A, Amador A, Pedraza-Chaverrí J, Tapia E, Zazueta C. Curcumin maintains cardiac and mitochondrial function in chronic kidney disease. Free Radic Biol Med. 2013;61:119–129. doi: 10.1016/j.freeradbiomed.2013.03.017. PubMed DOI
Hui Y, Lu M, Han Y, Zhou H, Liu W, Li L, Jin R. Resveratrol improves mitochondrial function in the remnant kidney from 5/6 nephrectomized rats. Acta Histochem. 2017;119:392–399. doi: 10.1016/j.acthis.2017.04.002. PubMed DOI
Hall AM, Unwin RJ, Parker N, Duchen MR. Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol. 2009;20:1293–1302. doi: 10.1681/ASN.2008070759. PubMed DOI PMC
Bagnasco S, Good D, Balaban R, Burg M. Lactate production in isolated segments of the rat nephron. Am J Physiol. 1985;248:F522–F526. doi: 10.1152/ajprenal.1985.248.4.F522. PubMed DOI
Tomar N, Zhang X, Kandel SM, Sadri S, Yang C, Liang M, Audi SH, Cowley AW, Jr, Dash RK. Substrate-dependent differential regulation of mitochondrial bioenergetics in the heart and kidney cortex and outer medulla. Biochim Biophys Acta Bioenerg. 2021;1863:148518. doi: 10.1016/j.bbabio.2021.148518. PubMed DOI PMC
Tuma Z, Kuncova J, Mares J, Matejovic M. Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics. Clin Exp Nephrol. 2016;20:39–49. doi: 10.1007/s10157-015-1135-x. PubMed DOI
Brezis M, Shanley P, Silva P, Spokes K, Lear S, Epstein FH, Rosen S. Disparate mechanisms for hypoxic cell injury in different nephron segments. Studies in the isolated perfused rat kidney. J Clin Invest. 1985;76:1796–1806. doi: 10.1172/JCI112171. PubMed DOI PMC
Jung K, Pergande M. Different susceptibility of cortical and medullary rat kidney mitochondria to ischemic injury. Biomed Biochim Acta. 1988;47:455–460. PubMed
Lash LH, Putt DA, Horky SJ, Zalups RK. Functional and toxicological characteristics of isolated renal mitochondria: impact of compensatory renal growth. Biochem Pharmacol. 2001;62:383–395. doi: 10.1016/S0006-2952(01)00673-6. PubMed DOI
Prieto-Carrasco R, García-Arroyo FE, Aparicio-Trejo OE, Rojas-Morales P, León-Contreras JC, Hernández-Pando R, Sánchez-Lozada LG, Tapia E, Pedraza-Chaverri J. Progressive reduction in mitochondrial mass is triggered by alterations in mitochondrial biogenesis and dynamics in chronic kidney disease induced by 5/6 nephrectomy. Biology (Basel) 2021;10:349. doi: 10.3390/biology10050349. PubMed DOI PMC
Acín-Pérez R, Carrascoso I, Baixauli F, Roche-Molina M, Latorre-Pellicer A, Fernández-Silva P, Mittelbrunn M, Sanchez-Madrid F, Pérez-Martos A, Lowell CA, Manfredi G, Enríquez JA. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 2014;19:1020–1033. doi: 10.1016/j.cmet.2014.04.015. PubMed DOI PMC
Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W, Ding G. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism. 2022;131:155194. doi: 10.1016/j.metabol.2022.155194. PubMed DOI