Spread of tetracycline resistance genes at a conventional dairy farm

. 2015 ; 6 () : 536. [epub] 20150529

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26074912

The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of smaller farms remains to be evaluated. Here we monitor the spread of tetracycline resistance (TC-r) genes at a middle-size conventional dairy farm, where chlortetracycline (CTC, as intrauterine suppository) is prophylactically used after each calving. Our study has shown that animals at the farm acquired the TC-r genes in their early age (1-2 weeks), likely due to colonization with TC-resistant bacteria from their mothers and/or the farm environment. The relative abundance of the TC-r genes tet(W), tet(Q), and tet(M) in fresh excrements of calves was about 1-2 orders of magnitude higher compared to heifers and dairy cows, possibly due to the presence of antibiotic residues in milk fed to calves. The occurrence and abundance of TC-r genes in fresh excrements of heifers and adult cows remained unaffected by intrauterine CTC applications, with tet(O), tet(Q), and tet(W) representing a "core TC-resistome" of the farm, and tet(A), tet(M), tet(Y), and tet(X) occurring occasionally. The genes tet(A), tet(M), tet(Y), and tet(X) were shown to be respectively harbored by Shigella, Lactobacillus and Clostridium, Acinetobacter, and Wautersiella. Soil in the farm proximity, as well as field soil to which manure from the farm was applied, was contaminated with TC-r genes occurring in the farm, and some of the TC-r genes persisted in the field over 3 months following the manure application. Concluding, our study shows that antibiotic resistance genes may be a stable part of the intestinal metagenome of cattle even if antibiotics are not used for growth stimulation, and that smaller dairy farms may also contribute to environmental pollution with antibiotic resistance genes.

Zobrazit více v PubMed

Aminov R. I., Chee-Sanford J. C., Garrigues N., Teferedegne B., Krapac I. J., White B. A., et al. . (2002). Development, validation, and application of PCR primers for detection of tetracycline efflux genes of Gram-negative bacteria. Appl. Environ. Microbiol. 68, 1786–1793. 10.1128/AEM.68.4.1786-1793.2002 PubMed DOI PMC

Baker-Austin C., Wright M. S., Stepanauskas R., McArthur J. V. (2006). Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182. 10.1016/j.tim.2006.02.006 PubMed DOI

Barkovskii A. L., Bridges C. (2012). Persistence and profiles of tetracycline resistance genes in swine farms and impact of operational practices on their occurrence in farms' vicinities. Water Air Soil Pollut. 223, 49–62. 10.1007/s11270-011-0838-1 DOI

Chee-Sanford J. C., Mackie R. I., Koike S., Krapac I. G., Lin Y.-F., Yannarell A. C., et al. . (2009). Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J. Environ. Qual. 38, 1086–1108. 10.2134/jeq2008.0128 PubMed DOI

Chowdhury P. R., McKinnon J., Wyrsch E., Hammond J. M., Charles I. G., Djordjevic S. P. (2014). Genomic interplay in bacterial communities: implications for growth promoting practices in animal husbandry. Front. Microbiol. 5:394. 10.3389/fmicb.2014.00394 PubMed DOI PMC

Clarke K. R., Gorley R. N. (2006). PRIMER v6: User Manual/Tutorial. Plymouth: PRIMER-E.

Dowd S. E., Callaway T. R., Wolcott R. D., Sun Y., McKeehan T., Hagevoort R. G., et al. . (2008). Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 8:125. 10.1186/1471-2180-8-125 PubMed DOI PMC

Durso L. M., Cook K. L. (2014). Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr. Opin. Microbiol. 19, 37–44. 10.1016/j.mib.2014.05.019 PubMed DOI

Durso L. M., Harhay G. P., Bono J. L., Smith T. P. (2011). Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach. J. Microbiol. Methods 84, 278–282. 10.1016/j.mimet.2010.12.008 PubMed DOI

Durso L. M., Harhay G. P., Smith T. P., Bono J. L., DeSantis T. Z., Harhay D. M., et al. . (2010). Animal-to-animal variation in fecal microbial diversity among beef cattle. Appl. Environ. Microbiol. 76, 4858–4862. 10.1128/AEM.00207-10 PubMed DOI PMC

Forsberg K. J., Reyes A., Wang B., Selleck E. M., Sommer M. O. A., Dantas G. (2012). The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111. 10.1126/science.1220761 PubMed DOI PMC

Galvão K. N. (2011). Identifying and treating uterine disease in dairy cows, in Proceedings 47th Florida Dairy Production Conference (Gainesville, FL: ).

Goshen T., Shpigel N. Y. (2006). Evaluation of intrauterine antibiotic treatment of clinical metritis and retained fetal membranes in dairy cows. Theriogenology 66, 2210–2218. 10.1016/j.theriogenology.2006.07.017 PubMed DOI

Gullberg E., Albrecht L. M., Karlsson C., Sandegren L., Andersson D. I. (2014). Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio 5, e01918–e01914. 10.1128/mBio.01918-14 PubMed DOI PMC

Hajurka J., Nagy J., Popelka P., Rozanska H., Sokol J., Cabadaj R., et al. (2003). Tetracycline concentrations in blood and milk of cows following intrauterine treatment of acute or subacute/chronic endometritis. Bull. Vet. Inst. Pulawy 47, 435–448. Available online at: http://bulletin.piwet.pulawy.pl/index.php/archive-pdf-a-abstracts/45/568-bull-vet-inst-pulawy-47-435-447-2003

Hall T. A. (1999). Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

Hong P. Y., Li X., Yang X., Shinkai T., Zhang Y., Wang X., et al. . (2012). Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings. Environ. Microbiol. 14, 1420–1431. 10.1111/j.1462-2920.2012.02726.x PubMed DOI

Hong P. Y., Yannarell A., Dai Q., Ekizoglu M., Mackie R. I. (2013). Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. Appl. Environ. Microbiol. 79, 2620–2629. 10.1128/AEM.03760-12 PubMed DOI PMC

Jechalke S., Heuer H., Siemens J., Amelung W., Smalla K. (2014). Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 22, 536–545. 10.1016/j.tim.2014.05.005 PubMed DOI

Kobashi Y., Hasebe A., Nishio M., Uchiyama H. (2007). Diversity of tetracycline resistance genes in bacteria isolated from various agricultural environments. Microbes Environ. 22, 44–51. 10.1264/jsme2.22.44 PubMed DOI

Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R., et al. . (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108, 4578–4585. 10.1073/pnas.1000081107 PubMed DOI PMC

Kyselková M., Jirout J., Chroňáková A., Vrchotová N., Bradley R., Schmitt H., et al. . (2013). Cow excrements enhance the occurrence of tetracycline resistance genes in soil regardless of their oxytetracycline content. Chemosphere 93, 2413–2418. 10.1016/j.chemosphere.2013.08.058 PubMed DOI

Kyselková M., Kotrbová L., Bhumibhamon G., Chroòáková A., Jirout J., Vrchotová N., et al. (2015). Tetracycline resistence genes persist in soil amended with cattle feces independently from chlortetracycline selection pressure. Soil Biol. Biochem. 81, 259–265. 10.1016/j.soilbio.2014.11.018 DOI

Lamendella R., Santo Domingo J. W., Ghosh S., Martinson J., Oerther D. B. (2011). Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 11:103. 10.1186/1471-2180-11-103 PubMed DOI PMC

Ling A. L., Pace N. R., Hernandez M. T., LaPara T. M. (2013). Tetracycline resistance and class 1 integron genes associated with indoor and outdoor aerosols. Environ. Sci. Technol. 47, 4046–4052. 10.1021/es400238g PubMed DOI

Looft T., Johnson T. A., Allen H. K., Bayles D. O., Alt D. P., Stedtfeld R. D., et al. . (2012). In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. U.S.A. 109, 1691–1696. 10.1073/pnas.1120238109 PubMed DOI PMC

McDonagh S., Maidji E., Ma W., Chang H. T., Fisher S., Pereira L. (2004). Viral and bacterial pathogens at the maternal-fetal interface. J. Infect. Dis. 190, 826–834. 10.1086/422330 PubMed DOI

Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O. (2007). Development of the human infant intestinal microbiota. PLoS Biol. 5:e177. 10.1371/journal.pbio.0050177 PubMed DOI PMC

Peak N., Knapp C. W., Yang R. K., Hanfelt M. M., Smith M. S., Aga D. S., et al. . (2007). Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environ. Microbiol. 9, 143–151. 10.1111/j.1462-2920.2006.01123.x PubMed DOI

Pruden A., Pei R., Storteboom H., Carlson K. H. (2006). Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ. Sci. Technol. 40, 7445–7450. 10.1021/es060413l PubMed DOI

Roberts M. C. (2005). Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 245, 195–203. 10.1016/j.femsle.2005.02.034 PubMed DOI

Rybaříková J., Dolejská M., Materna D., Literák I., Čížek A. (2010). Phenotypic and genotypic characteristics of antimicrobial resistant Escherichia coli isolated from symbovine flies, cattle and sympatric insectivorous house martins from a farm in the Czech Republic (2006–2007). Res. Vet. Sci. 89, 179–183. 10.1016/j.rvsc.2010.02.016 PubMed DOI

Santamaría J., López L., Soto C. Y. (2011). Detection and diversity evaluation of tetracycline resistance genes in grassland-based production systems in Colombia, South America. Front. Microbiol. 2, 1–10. 10.3389/fmicb.2011.00252 PubMed DOI PMC

Sawant A. A., Hegde N. V., Straley B. A., Donaldson S. C., Love B. C., Knabel S. J., et al. . (2007). Antimicrobial-resistant enteric bacteria from dairy cattle. Appl. Environ. Microbiol. 73, 156–163. 10.1128/AEM.01551-06 PubMed DOI PMC

Smith D. L., Dushoff J., Morris J. G. (2005). Agricultural antibiotics and human health. PLoS Med. 2:e232. 10.1371/journal.pmed.0020232 PubMed DOI PMC

Thompson C. L., Wang B., Holmes A. J. (2008). The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2, 739–748. 10.1038/ismej.2008.29 PubMed DOI

van Essen-Zandbergen A., Smith H., Veldman K., Mevius D. (2009). In vivo transfer of an incFIB plasmid harbouring a class 1 integron with gene cassettes dfrA1-aadA1. Vet. Microbiol. 137, 402–407. 10.1016/j.vetmic.2009.02.004 PubMed DOI

Wang R., Wei R., Chen M., Wang T. (2010). A new, simple and rapid HPLC method for determination of chlortetracycline in pig solid manure. Ital. J. Anim. Sci. 9, 190–193. 10.4081/ijas.2010.e37 DOI

Wichmann F., Udikovic-Kolic N., Andrew S., Handelsman J. (2014). Diverse antibiotic resistance genes in dairy cow manure. mBio 5, e01017–e01013. 10.1128/mBio.01017-13 PubMed DOI PMC

Zhang Y., Snow D. D., Parker D., Zhou Z., Li X. (2013). Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures. Environ. Sci. Technol. 47, 10206-10213. 10.1021/es401964s PubMed DOI

Zhu Y.-G., Johnson T. A., Su J.-Q., Qiao M., Guo G.-X., Stedtfeld R. D., et al. . (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. U.S.A. 110, 3435-3440. 10.1073/pnas.1222743110 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...