Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31043618
PubMed Central
PMC6494816
DOI
10.1038/s41598-019-42734-5
PII: 10.1038/s41598-019-42734-5
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria účinky léků genetika MeSH
- bakteriální geny genetika MeSH
- hnůj mikrobiologie MeSH
- půdní mikrobiologie * MeSH
- rezistence na tetracyklin genetika MeSH
- skot MeSH
- tetracyklin farmakologie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- hnůj MeSH
- tetracyklin MeSH
Bacterial genes responsible for resistance to antibiotic agents (ARG) are spread from livestock to soil through application of manure, threatening environmental and human health. We investigated the mechanisms of ARG dissemination and persistence to disentangle i) the influence of nutrients and microorganisms on the soil tetracycline (TET) resistome, and ii) the role of indigenous soil microbiota in preventing ARG spread. We analysed short-term (7 days) and persistent (84 days) effects of manure on the resistome of three antibiotic-free pasture soils. Four microcosm treatments were evaluated: control, mineral nutrient fertilization, and deposition of a layer of fresh manure onto soil or γ-irradiated soil. We quantified five TET-resistance genes, isolated 135 TET-resistant bacteria and sequenced both culturable TET-resistant and whole bacterial communities. Manure amendments, but not nutrient addition, increased the abundance of TET-r genes such as tet(Y). Such changes persisted with time, in contrast with the TET-resistant bacterial composition, which partially recovered after manure amendments. Manured γ-irradiated soils showed significantly lower nutrient content and higher TET-r gene abundance than non-irradiated soils, suggesting that native soil bacteria are essential for the fertilization effect of manure on soil as well as control the dissemination of potentially risky TET-r genes.
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
World Health Organization (WHO). Antimicrobial Resistance Available: http://www.who.int/mediacentre/factsheets/fs194/en/ [accessed 15 October 2018] (2018).
Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014;22:536–545. doi: 10.1016/j.tim.2014.05.005. PubMed DOI
Chee-Sanford JC, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J. Environ. Qual. 2009;38:1086–1108. doi: 10.2134/jeq2008.0128. PubMed DOI
Kyselková M, et al. Tetracycline resistance genes persist in soil amended with cattle feces independently from chlortetracycline selection pressure. Soil Biol. Biochem. 2015;81:259–265. doi: 10.1016/j.soilbio.2014.11.018. DOI
Hong PY, Yannarell AC, Dai Q, Ekizoglu M, Mackie RI. Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. Appl. Environ. Microbiol. 2013;79:2620–2629. doi: 10.1128/AEM.03760-12. PubMed DOI PMC
Forsberg KJ, et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337:1107–1111. doi: 10.1126/science.1220761. PubMed DOI PMC
Pruden A, Pei R, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environ. Sci. Technol. 2006;40:7445–7450. doi: 10.1021/es060413l. PubMed DOI
Unc A, Goss MJ. Transport of bacteria from manure and protection of water resources. Appl. Soil Ecol. 2004;25:1–18. doi: 10.1016/j.apsoil.2003.08.007. DOI
Durso LM, Cook KL. Impacts of antibiotic use in agriculture: What are the benefits and risks? Curr. Opin. Microbiol. 2014;19:37–44. doi: 10.1016/j.mib.2014.05.019. PubMed DOI
Franz E, et al. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils. Environ. Microbiol. 2008;10:313–327. doi: 10.1111/j.1462-2920.2007.01453.x. PubMed DOI
van Elsas JD, et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA. 2012;109:1159–1164. doi: 10.1073/pnas.1109326109. PubMed DOI PMC
Chen QL, et al. Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil? Soil Biol. Biochem. 2017;114:229–237. doi: 10.1016/j.soilbio.2017.07.022. DOI
Goberna M, et al. Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure. Appl. Soil Ecol. 2011;49:18–25. doi: 10.1016/j.apsoil.2011.07.007. DOI
Andrews RE, Johnson WS, Guard AR, Marvin JD. Survival of enterococci and Tn 916-like conjugative transposons in soil. Can. J. Microbiol. 2004;50:957–966. doi: 10.1139/w04-090. PubMed DOI
Forsberg KJ, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612–616. doi: 10.1038/nature13377. PubMed DOI PMC
Kyselková M, et al. Cow excrements enhance the occurrence of tetracycline resistance genes in soil regardless of their oxytetracycline content. Chemosphere. 2013;93:2413–2418. doi: 10.1016/j.chemosphere.2013.08.058. PubMed DOI
Kyselková M, Jirout J, Vrchotová N, Schmitt H, Elhottová D. Spread of tetracycline resistance genes at a conventional dairy farm. Front. Microbiol. 2015;6:1–14. doi: 10.3389/fmicb.2015.00536. PubMed DOI PMC
Kang Y, et al. High diversity and abundance of cultivable tetracycline-resistant bacteria in soil following pig manure application. Sci. Rep. 2018;8:1489. doi: 10.1038/s41598-018-20050-8. PubMed DOI PMC
Duong TTT, Verma SL, Penfold C, Marschner P. Nutrient release from composts into the surrounding soil. Geoderma. 2013;195–196:42–47. doi: 10.1016/j.geoderma.2012.11.010. DOI
D’costa VM, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–461. doi: 10.1038/nature10388. PubMed DOI
Chopra, I. & Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev.65, 232–260 (2001). PubMed PMC
Forsberg KJ, Patel S, Wencewicz TA, Dantas G. The tetracycline destructases: A novel family of tetracycline-inactivating enzymes. Chem. Biol. 2015;22:888–897. doi: 10.1016/j.chembiol.2015.05.017. PubMed DOI PMC
Kyselková M, et al. Characterization of tet(Y)-carrying lowGC plasmids exogenously captured from cow manure at a conventional dairy farm. FEMS Microbiol. Ecol. 2016;92:fiw075. doi: 10.1093/femsec/fiw075. PubMed DOI
Keen, P. L. & Montforts, M. H. M. M. Antimicrobial resistance in environment (John Wiley & Sons 2012).
Götz A, Smalla K. Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil. Appl. Environ. Microbiol. 1997;63:1980–1986. PubMed PMC
Heuer H, Kopmann C, Binh CTT, Top EM, Smalla K. Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G + C content. Environ. Microbiol. 2009;11:937–949. doi: 10.1111/j.1462-2920.2008.01819.x. PubMed DOI
McNamara NP, Black HIJ, Beresford NA, Parekh NR. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl. Soil Ecol. 2003;24:117–132. doi: 10.1016/S0929-1393(03)00073-8. DOI
Berns AE, et al. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur. J. Soil Sci. 2008;59:540–550. doi: 10.1111/j.1365-2389.2008.01016.x. DOI
Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017;15:579–590. doi: 10.1038/nrmicro.2017.87. PubMed DOI
Das S, Jeong ST, Das S, Kim PJ. Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy. Front. Microbiol. 2017;8:1–10. PubMed PMC
Agersø Y, Wulff G, Vaclavik E, Halling-Sørensen B, Jensen LB. Effect of tetracycline residues in pig manure slurry on tetracycline-resistant bacteria and resistance gene tet(M) in soil microcosms. Environ. Int. 2006;32:876–882. doi: 10.1016/j.envint.2006.05.008. PubMed DOI
Santamaría J, López L, Soto CY. Detection and diversity evaluation of tetracycline resistance genes in grassland-based production systems in Colombia, South America. Front. Microbiol. 2011;2:1–10. doi: 10.3389/fmicb.2011.00252. PubMed DOI PMC
Roberts, M. C. Mechanisms of bacterial antibiotic resistance and lessons learned from environmental tetracycline-resistant bacteria. In Antimicrobial Resistance in the Environment (eds Keen, P. L. & Montforts, M. H. M. M.) 93–121 (John Wiley & Sons, Inc. 2011).
Lin H, et al. Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Sci. Total Environ. 2017;607–608:725–732. doi: 10.1016/j.scitotenv.2017.07.057. PubMed DOI
Trevors JT. Sterilization and inhibition of microbial activity in soil. J. Microbiol. Methods. 1996;26:53–59. doi: 10.1016/0167-7012(96)00843-3. DOI
Lees K, Fitzsimons M, Snape J, Tappin A, Comber S. Soil sterilisation methods for use in OECD 106: How effective are they? Chemosphere. 2018;209:61–67. doi: 10.1016/j.chemosphere.2018.06.073. PubMed DOI
Whittle G, Shoemaker NB, Salyers AA. The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell. Mol. Life Sci. 2002;59:2044–2054. doi: 10.1007/s000180200004. PubMed DOI PMC
Kazimierczak KA, Flint HJ, Scott KP. Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria. Antimicrob. Agents Chemother. 2006;50:2632–2639. doi: 10.1128/AAC.01587-05. PubMed DOI PMC
Agersø Y, Jensen LB, Givskov M, Roberts MC. The identifcation of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group. FEMS Microbiol. Lett. 2002;214:251–256. doi: 10.1016/S0378-1097(02)00883-2. PubMed DOI
Almasaudi SB. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J. Biol. Sci. 2018;25:586–596. doi: 10.1016/j.sjbs.2016.02.009. PubMed DOI PMC
Wright GDQ&A. Antibiotic resistance: Where does it come from and what can we do about it? BMC Biology. 2010;8:123. doi: 10.1186/1741-7007-8-123. PubMed DOI PMC
Sutcliffe B, et al. Insights from the genomes of microbes thriving in uranium-enriched sediments. Microb. Ecol. 2018;75:970–984. doi: 10.1007/s00248-017-1102-z. PubMed DOI
Kobashi Y, Hasebe A, Nishio M, Uchiyama H. Diversity of tetracycline resistance genes in bacteria isolated from various agricultural environments. Microbes Environ. 2007;22:44–51. doi: 10.1264/jsme2.22.44. DOI
Hakima N, et al. First case of neonatal bacteremia due to Dyella genus. Diagn. Microbiol. Infect. Dis. 2017;87:199–201. doi: 10.1016/j.diagmicrobio.2016.03.003. PubMed DOI
Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3:421–433. doi: 10.4161/viru.21282. PubMed DOI PMC
Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. Environmental and gut Bacteroidetes: The food connection. Front. Microbiol. 2011;2:93. doi: 10.3389/fmicb.2011.00093. PubMed DOI PMC
Ghosh S, Sadowsky MJ, Roberts MC, Gralnick JA, LaPara TM. Sphingobacterium sp. strain PM2-P1-29 harbours a functional tet(X) gene encoding for the degradation of tetracycline. J. Appl. Microbiol. 2009;106:1336–1342. doi: 10.1111/j.1365-2672.2008.04101.x. PubMed DOI
Kembel SW, Wu M, Eisen JA, Green JL. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput. Biol. 2012;8:e1002743. doi: 10.1371/journal.pcbi.1002743. PubMed DOI PMC
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and nonlinear mixed effects models. Available https://cran.r-project.org/package=nlme (2018).
R Core Team. R: A Language and Environment for Statistical Computing. Available http://www.r-project.org/ (2018).
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biometrical J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Chen H, Boutros PC. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics. 2011;12:35. doi: 10.1186/1471-2105-12-35. PubMed DOI PMC
Braak, C. J. F. ter & Smilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0 (2012).