The Evaluation and Quantitation of Dihydrogen Metabolism Using Deuterium Isotope in Rats

. 2015 ; 10 (6) : e0130687. [epub] 20150623

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26103048

Grantová podpora
G1100051 Medical Research Council - United Kingdom
MR/L007339/1 Medical Research Council - United Kingdom

PURPOSE: Despite the significant interest in molecular hydrogen as an antioxidant in the last eight years, its quantitative metabolic parameters in vivo are still lacking, as is an appropriate method for determination of hydrogen effectivity in the mammalian organism under various conditions. BASIC PROCEDURES: Intraperitoneally-applied deuterium gas was used as a metabolic tracer and deuterium enrichment was determined in the body water pool. Also, in vitro experiments were performed using bovine heart submitochondrial particles to evaluate superoxide formation in Complex I of the respiratory chain. MAIN FINDINGS: A significant oxidation of about 10% of the applied dose was found under physiological conditions in rats, proving its antioxidant properties. Hypoxia or endotoxin application did not exert any effect, whilst pure oxygen inhalation reduced deuterium oxidation. During in vitro experiments, a significant reduction of superoxide formation by Complex I of the respiratory chain was found under the influence of hydrogen. The possible molecular mechanisms of the beneficial effects of hydrogen are discussed, with an emphasis on the role of iron sulphur clusters in reactive oxygen species generation and on iron species-dihydrogen interaction. PRINCIPAL CONCLUSIONS: According to our findings, hydrogen may be an efficient, non-toxic, highly bioavailable and low-cost antioxidant supplement for patients with pathological conditions involving ROS-induced oxidative stress.

Zobrazit více v PubMed

1 Kayar SR, Axley MJ., Homer LD, Harabin AL (1994) Hydrogen gas is not oxidized by mammalian tissues under hyperbaric conditions. Undersea Hyperb Med 21 (3):265–75. PubMed

Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K et al. (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–94. PubMed

Ohta S (2011) Recent Progress Toward Hydrogen Medicine: Potential of Molecular Hydrogen for Preventive and Therapeutic Applications. Curr Pharm Design 17:2241–52. PubMed PMC

Nakao A, Sugimoto R, Billiar TR, McCurry KR (2009) Therapeutic Antioxidant Medical Gas. J Clin Bioch Nutr 44:1–13. PubMed PMC

Ono H, Nishijima Y, Adachi N (2012) A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med Gas Res 2:21–7. PubMed PMC

Shi P, Sun W, Shi P (2012) A hypothesis on chemical mechanism of the effect of hydrogen. Med Gas Res 2:17–20. 10.1186/2045-9912-2-17 PubMed DOI PMC

Qian SY, Buettner GR (1999) Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study. Free Rad Biol Med 26:1447–56. PubMed

Fernandes VR., Pinto AMFR, Rangel CM (2010) Hydrogen production from sodium borohydride in methanol-water mixtures. Int J Hydrog Energy 35(18):9862–8.

Schierbeek H, Rieken R, Dorst KY, Penning C, van Goudoever JB (2009) Validation of deuterium and oxygen18 in urine and saliva samples from children using on-line continuous-flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 23(22):3549–54. 10.1002/rcm.4279 PubMed DOI

Schierbeek H, van den Akker CH, Fay LB, van Goudoever JB (2012) High-precision mass spectrometric analysis using stable isotopes in studies of children. Mass Spectrom Rev. 31(2):312–30. 10.1002/mas.20344 PubMed DOI

Drose S, Galkin A, Brandt U (2009) Measurement of superoxide formation by mitochondrial complex I of Yarrovia lipolytica. Methods in Enzymology 456: 475–490. 10.1016/S0076-6879(08)04426-1 PubMed DOI

Kombu RS, Zhang GF, Abbas R, Mieyal JJ, Anderson VE, Kelleher JK et al. (2009) Dynamics of glutathione and ophthalmate traced with 2H-enriched body water in rats and humans. Am J Physiol Endocrinol Metab 297:E260–9. 10.1152/ajpendo.00080.2009 PubMed DOI PMC

Toombs ChF, Insko MA, Winter EA, Deckwerth TL,Usansky H, Jamil K et al. (2010) Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. Br J Clin Pharmacol 69(6):626–36. 10.1111/j.1365-2125.2010.03636.x PubMed DOI PMC

Tolun AA, Zhang H, Ii'yasova D, Sztáray J, Young SP, Millington DS (2010) Allantoin in Human Urine Quantified by UPLC-MS/MS. Anal Biochem. 402(2): 191–193. 10.1016/j.ab.2010.03.033 PubMed DOI PMC

Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. 10.1042/BJ20081386 PubMed DOI PMC

Svistunenko DA, Patel RP, Voloshchenko SV, Wilson MT (1997) The globin-based free radical of ferryl hemoglobin is detected in normal human blood. J Biol Chem 272:7114–21. PubMed

Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution. J Phys Chem Ref Data 17: 513–886.

Sato Y, Kajiyama S, Amano A, Kondo Y, Sasaki T, Handa S et al. (2008) Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun 375:346–50. 10.1016/j.bbrc.2008.08.020 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...