The Evaluation and Quantitation of Dihydrogen Metabolism Using Deuterium Isotope in Rats
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
Grantová podpora
G1100051
Medical Research Council - United Kingdom
MR/L007339/1
Medical Research Council - United Kingdom
PubMed
26103048
PubMed Central
PMC4477931
DOI
10.1371/journal.pone.0130687
PII: PONE-D-15-01418
Knihovny.cz E-zdroje
- MeSH
- antioxidancia metabolismus farmakologie MeSH
- ascitická tekutina metabolismus MeSH
- deuterium farmakokinetika MeSH
- endotoxiny farmakologie MeSH
- hyperoxie metabolismus MeSH
- hypoxie metabolismus MeSH
- krysa rodu Rattus MeSH
- oxid uhelnatý analýza MeSH
- oxidační stres účinky léků MeSH
- potkani Wistar MeSH
- preklinické hodnocení léčiv MeSH
- respirační komplex I účinky léků metabolismus MeSH
- respirační vzplanutí účinky léků MeSH
- scavengery volných radikálů metabolismus farmakologie MeSH
- skot MeSH
- srdeční mitochondrie metabolismus MeSH
- superoxidy metabolismus MeSH
- tělesná voda metabolismus MeSH
- tkáňová distribuce MeSH
- vodík metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- antioxidancia MeSH
- deuterium MeSH
- endotoxiny MeSH
- oxid uhelnatý MeSH
- respirační komplex I MeSH
- scavengery volných radikálů MeSH
- superoxidy MeSH
- vodík MeSH
PURPOSE: Despite the significant interest in molecular hydrogen as an antioxidant in the last eight years, its quantitative metabolic parameters in vivo are still lacking, as is an appropriate method for determination of hydrogen effectivity in the mammalian organism under various conditions. BASIC PROCEDURES: Intraperitoneally-applied deuterium gas was used as a metabolic tracer and deuterium enrichment was determined in the body water pool. Also, in vitro experiments were performed using bovine heart submitochondrial particles to evaluate superoxide formation in Complex I of the respiratory chain. MAIN FINDINGS: A significant oxidation of about 10% of the applied dose was found under physiological conditions in rats, proving its antioxidant properties. Hypoxia or endotoxin application did not exert any effect, whilst pure oxygen inhalation reduced deuterium oxidation. During in vitro experiments, a significant reduction of superoxide formation by Complex I of the respiratory chain was found under the influence of hydrogen. The possible molecular mechanisms of the beneficial effects of hydrogen are discussed, with an emphasis on the role of iron sulphur clusters in reactive oxygen species generation and on iron species-dihydrogen interaction. PRINCIPAL CONCLUSIONS: According to our findings, hydrogen may be an efficient, non-toxic, highly bioavailable and low-cost antioxidant supplement for patients with pathological conditions involving ROS-induced oxidative stress.
Division of Mother and Child University of Amsterdam Amsterdam Netherlands
School of Biological Sciences Queen's University Belfast United Kingdom
Zobrazit více v PubMed
1 Kayar SR, Axley MJ., Homer LD, Harabin AL (1994) Hydrogen gas is not oxidized by mammalian tissues under hyperbaric conditions. Undersea Hyperb Med 21 (3):265–75. PubMed
Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K et al. (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–94. PubMed
Ohta S (2011) Recent Progress Toward Hydrogen Medicine: Potential of Molecular Hydrogen for Preventive and Therapeutic Applications. Curr Pharm Design 17:2241–52. PubMed PMC
Nakao A, Sugimoto R, Billiar TR, McCurry KR (2009) Therapeutic Antioxidant Medical Gas. J Clin Bioch Nutr 44:1–13. PubMed PMC
Ono H, Nishijima Y, Adachi N (2012) A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med Gas Res 2:21–7. PubMed PMC
Shi P, Sun W, Shi P (2012) A hypothesis on chemical mechanism of the effect of hydrogen. Med Gas Res 2:17–20. 10.1186/2045-9912-2-17 PubMed DOI PMC
Qian SY, Buettner GR (1999) Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study. Free Rad Biol Med 26:1447–56. PubMed
Fernandes VR., Pinto AMFR, Rangel CM (2010) Hydrogen production from sodium borohydride in methanol-water mixtures. Int J Hydrog Energy 35(18):9862–8.
Schierbeek H, Rieken R, Dorst KY, Penning C, van Goudoever JB (2009) Validation of deuterium and oxygen18 in urine and saliva samples from children using on-line continuous-flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 23(22):3549–54. 10.1002/rcm.4279 PubMed DOI
Schierbeek H, van den Akker CH, Fay LB, van Goudoever JB (2012) High-precision mass spectrometric analysis using stable isotopes in studies of children. Mass Spectrom Rev. 31(2):312–30. 10.1002/mas.20344 PubMed DOI
Drose S, Galkin A, Brandt U (2009) Measurement of superoxide formation by mitochondrial complex I of Yarrovia lipolytica. Methods in Enzymology 456: 475–490. 10.1016/S0076-6879(08)04426-1 PubMed DOI
Kombu RS, Zhang GF, Abbas R, Mieyal JJ, Anderson VE, Kelleher JK et al. (2009) Dynamics of glutathione and ophthalmate traced with 2H-enriched body water in rats and humans. Am J Physiol Endocrinol Metab 297:E260–9. 10.1152/ajpendo.00080.2009 PubMed DOI PMC
Toombs ChF, Insko MA, Winter EA, Deckwerth TL,Usansky H, Jamil K et al. (2010) Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. Br J Clin Pharmacol 69(6):626–36. 10.1111/j.1365-2125.2010.03636.x PubMed DOI PMC
Tolun AA, Zhang H, Ii'yasova D, Sztáray J, Young SP, Millington DS (2010) Allantoin in Human Urine Quantified by UPLC-MS/MS. Anal Biochem. 402(2): 191–193. 10.1016/j.ab.2010.03.033 PubMed DOI PMC
Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. 10.1042/BJ20081386 PubMed DOI PMC
Svistunenko DA, Patel RP, Voloshchenko SV, Wilson MT (1997) The globin-based free radical of ferryl hemoglobin is detected in normal human blood. J Biol Chem 272:7114–21. PubMed
Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution. J Phys Chem Ref Data 17: 513–886.
Sato Y, Kajiyama S, Amano A, Kondo Y, Sasaki T, Handa S et al. (2008) Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun 375:346–50. 10.1016/j.bbrc.2008.08.020 PubMed DOI