Transformation and characterization of an arsenic gene operon from urease-positive thermophilic Campylobacter (UPTC) in Escherichia coli
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26122364
DOI
10.1007/s12223-015-0405-z
PII: 10.1007/s12223-015-0405-z
Knihovny.cz E-zdroje
- MeSH
- arsen metabolismus toxicita MeSH
- Campylobacter lari účinky léků genetika metabolismus MeSH
- Escherichia coli genetika metabolismus MeSH
- metabolické sítě a dráhy genetika MeSH
- mikrobiální testy citlivosti MeSH
- operon * MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- stanovení celkové genové exprese MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arsen MeSH
An arsenate susceptibility test was performed with transformed and cultured Escherichia coli DH5α cells, which carried recombinant DNA of full-length arsenic (ars) operon, namely a putative membrane permease, ArsP; a transcriptional repressor, ArsR; an arsenate reductase, ArsC; and an arsenical-resistance membrane transporter, Acr3, from the Japanese urease-positive thermophilic Campylobacter lari (UPTC) CF89-12. The E. coli DH5α transformant showed reduced susceptibility to arsenate (~1536 μg/mL), compared to the control. Thus, these ars four-genes from the UPTC CF89-12 strain cells could confer a reduced susceptibility to arsenate in the transformed and E. coli DH5α cells. E. coli transformants with truncated ars operons, acr3 (acr3) and arsC-acr3 (∆arsC-acr3), of the ars operon, showed an MIC value of 384 μg/mL (~384 μg/mL), similar to the E. coli cells which carried the pGEM-T vector (control). Reverse transcription PCR confirmed in vivo transcription of recombinant full-length ars operon and deletion variants (∆acr3 and ∆arsC-acr3) in the transformed E. coli cells.
Zobrazit více v PubMed
Br J Biomed Sci. 2013;70(1):15-21 PubMed
FEBS Lett. 2002 Oct 2;529(1):86-92 PubMed
J Bacteriol. 1998 Apr;180(7):1655-61 PubMed
Microbiology. 1998 Oct;144 ( Pt 10):2705-13 PubMed
Proc Natl Acad Sci U S A. 1982 Oct;79(20):6119-22 PubMed
Appl Environ Microbiol. 1998 Feb;64(2):411-8 PubMed
J Clin Microbiol. 1997 Sep;35(9):2386-92 PubMed
FEMS Microbiol Rev. 1994 Dec;15(4):355-67 PubMed
Clin Microbiol Infect. 2001 Feb;7(2):96-7 PubMed
J Bacteriol. 1992 Jun;174(11):3684-94 PubMed
Foodborne Pathog Dis. 2008 Aug;5(4):371-86 PubMed
Antimicrob Agents Chemother. 2014;58(4):2021-9 PubMed
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2075-80 PubMed
J Clin Microbiol. 2002 Mar;40(3):1053-5 PubMed
Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9474-8 PubMed
J Bacteriol. 1995 Apr;177(8):2050-6 PubMed
Int J Syst Evol Microbiol. 2009 May;59(Pt 5):1126-32 PubMed
Appl Environ Microbiol. 2006 Apr;72(4):3069-71 PubMed
Ann Intern Med. 1984 Jul;101(1):55-7 PubMed
PLoS One. 2013;8(3):e58894 PubMed
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed
Folia Microbiol (Praha). 2013 May;58(3):253-60 PubMed
Appl Environ Microbiol. 2000 May;66(5):1826-33 PubMed
Microbiology. 2002 Dec;148(Pt 12):3983-92 PubMed
Int J Environ Res Public Health. 2013 Aug 07;10(8):3453-64 PubMed
Appl Environ Microbiol. 2009 Aug;75(15):5064-73 PubMed